The work by Hu and Li (2018, “Unsteady RANS Simulations of Wells Turbine Under Transient Flow Conditions,” ASME J. Offshore Mech. Arct. Eng., 140(1), p. 011901) presents the numerical simulation of a high-solidity Wells turbine by means of a computational fluid dynamics (CFD) (Reynolds-averaged Navier–Stokes (RANS)) approach. A key aspect highlighted by the authors is the presence of a hysteretic loop in the machine's performance curves, due (according to their explanation) to the interaction of vortices shed by the blade with the blade circulation, which is responsible for the aerodynamic forces. It is our opinion that this work contains some serious errors that invalidate the results. In this brief discussion, we aim to demonstrate how the hysteresis found and discussed by the authors should not be present in the turbine analyzed in Hu and Li (2018, “Unsteady RANS Simulations of Wells Turbine Under Transient Flow Conditions,” ASME J. Offshore Mech. Arct. Eng., 140(1), p. 011901), and it is unlikely to be present in any Wells turbine. The fact that Hu and Li find hysteresis in their simulations is most likely caused by numerical errors due to an insufficient temporal discretization. This and other inaccuracies could have been avoided with a more careful consideration of the available literature.

References

1.
Carr
,
L. W.
,
McAlister
,
K. W.
, and
McCroskey
,
W. J.
,
1977
, “
Analysis of the Development of Dynamic Stall Based on Oscillating Airfoil Experiments
,” NASA Ames Research Center, Moffett Field, CA, Report No. NASATN-D-8382.
2.
McAlister
,
K. W.
,
Carr
,
L. W.
, and
McCroskey
,
W. J.
,
1978
, “
Dynamic Stall Experiments on the NACA 0012 Airfoil
,” NASA Ames Research Center, Moffett Field, CA, Report No.
NASA-TP-1100
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19780009057.pdf
3.
Hu
,
Q.
, and
Li
,
Y.
,
2018
, “
Unsteady RANS Simulations of Wells Turbine Under Transient Flow Conditions
,”
ASME J. Offshore Mech. Arct. Eng.
,
140
(
1
), p.
011901
.
4.
McCroskey
,
W. J.
,
1981
, “
The Phenomenon of Dynamic Stall
,” NASA Ames Research Center, Moffett Field, CA, Report No. NASA-TM-81264.
5.
Leishman
,
J. G.
,
1984
, “
Contributions to the Experimental Investigation and Analysis of Aerofoil Dynamic Stall
,”
Ph.D. thesis
, Department of Aeronautics and Fluid Mechanics, University of Glasgow, Glasgow, UK.http://theses.gla.ac.uk/1798/
6.
McAlister
,
K. W.
,
Pucci
,
S. L.
,
McCroskey
,
W.
, and
Carr
,
L. W.
,
1978
, “
An Experimental Study of Dynamic Stall on Advanced Airfoil Sections—Volume 2 Pressure and Force Data
,” NASA Ames Research Center, Moffett Field, CA, Report No.
NASA-TM-84245
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19830003778.pdf
7.
Ericsson
,
L. E.
, and
Reding
,
J. P.
,
1988
, “
Fluid Mechanics of Dynamic Stall—Part 1: Unsteady Flow Concepts
,”
J. Fluids Struct.
,
2
(
1
), pp.
1
33
.
8.
Seto
,
L. Y.
, and
Galbraith
,
R. A. M.
,
1985
, “
The Effect of Pitch Rate on the Dynamic Stall of the Effect of Pitch Rate on the Dynamic Stall of a NACA 23012 Aerofoil
,” Eleventh European Rotorcraft Forum, London, Sept. 10–13, Paper No. 34.
9.
Leishman
,
J. G.
,
1990
, “
Dynamic Stall Experiments on the NACA 23012 Aerofoil
,”
Exp. Fluids
,
9
(
1–2
), pp.
49
58
.
10.
Lee
,
T.
, and
Gerontakos
,
P.
,
2004
, “
Investigation of Flow Over an Oscillating Airfoil
,”
J. Fluid Mech.
,
512
, pp.
313
341
.
11.
Mittal
,
S.
, and
Saxena
,
P.
,
2002
, “
Hysteresis in Flow Past a NACA 0012 Airfoil
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
19–20
), pp.
2207
2217
.
12.
Freitas
,
C.
,
1993
, “
Journal of Fluids Engineering Editorial Policy Statement on the Control of Numerical Accuracy
,”
ASME J. Fluids Eng.
,
115
(
3
), pp.
339
340
.
13.
Ghisu
,
T.
,
Puddu
,
P.
, and
Cambuli
,
F.
,
2016
, “
Physical Explanation of the Hysteresis in Wells Turbines: A Critical Reconsideration
,”
ASME J. Fluids Eng.
,
138
(11), p. 111105.
14.
Setoguchi
,
T.
,
Takao
,
M.
, and
Kaneko
,
K.
,
1998
, “
Hysteresis on Wells Turbine Characteristics in Reciprocating Flow
,”
Int. J. Rotating Mach.
,
4
(
1
), pp.
17
24
.
15.
Paderi
,
M.
, and
Puddu
,
P.
,
2013
, “
Experimental Investigation in a Wells Turbine Under Bi-Directional Flow
,”
Renewable Energy
,
57
, pp.
570
576
.
16.
Puddu
,
P.
,
Paderi
,
M.
, and
Manca
,
C.
,
2014
, “
Aerodynamic Characterization of a Wells Turbine Under Bi-Directional Airflow
,”
Energy Procedia
,
45
, pp.
278
287
.
17.
Kim
,
T. H.
,
Kinoue
,
Y.
,
Setoguchi
,
T.
, and
Kaneko
,
K.
,
2002
, “
Effects of Hub-to-Tip Ratio and Tip Clearance on Hysteretic Characteristics of Wells Turbine for Wave Power Conversion
,”
J. Therm. Sci.
,
11
(
3
), pp.
207
213
.
18.
Kinoue
,
Y.
,
Setoguchi
,
T.
,
Kim
,
T. H.
,
Kaneko
,
K.
, and
Inoue
,
M.
,
2003
, “
Mechanism of Hysteretic Characteristics of Wells Turbine for Wave Power Conversion
,”
ASME J. Fluids Eng.
,
125
(
2
), pp.
302
307
.
19.
Setoguchi
,
T.
,
Kinoue
,
Y.
,
Kim
,
T. H.
,
Kaneko
,
K.
, and
Inoue
,
M.
,
2003
, “
Hysteretic Characteristics of Wells Turbine for Wave Power Conversion
,”
Renewable Energy
,
28
(
13
), pp.
2113
2127
.
20.
Kinoue
,
Y.
,
Kim
,
T. H.
,
Setoguchi
,
T.
,
Mohammad
,
M.
,
Kaneko
,
K.
, and
Inoue
,
M.
,
2004
, “
Hysteretic Characteristics of Monoplane and Biplane Wells Turbine for Wave Power Conversion
,”
Energy Convers. Manage.
,
45
(
9–10
), pp.
1617
1629
.
21.
Mamun
,
M.
,
Kinoue
,
Y.
,
Setoguchi
,
T.
,
Kim
,
T.
,
Kaneko
,
K.
, and
Inoue
,
M.
,
2004
, “
Hysteretic Flow Characteristics of Biplane Wells Turbine
,”
Ocean Eng.
,
31
(
11–12
), pp.
1423
1435
.
22.
Mamun
,
M.
,
Setoguchi
,
T.
,
Kinoue
,
Y.
, and
Kaneko
,
K.
,
2005
, “
Visualization of Unsteady Flow Phenomena of Wells Turbine During Hysteresis Study
,”
J. Flow Visualization Image Process.
,
12
(
2
), pp.
111
123
.
23.
Kinoue
,
Y.
,
Mamun
,
M.
,
Setoguchi
,
T.
, and
Kaneko
,
K.
,
2007
, “
Hysteretic Characteristics of Wells Turbine for Wave Power Conversion (Effects of Solidity and Setting Angle)
,”
Int. J. Sustainable Energy
,
26
(
1
), pp.
51
60
.
24.
Ghisu
,
T.
,
Puddu
,
P.
, and
Cambuli
,
F.
,
2015
, “
Numerical Analysis of a Wells Turbine at Different Non-Dimensional Piston Frequencies
,”
J. Therm. Sci.
,
24
(
6
), pp.
535
543
.
25.
Ghisu
,
T.
,
Puddu
,
P.
, and
Cambuli
,
F.
,
2017
, “
A Detailed Analysis of the Unsteady Flow Within a Wells Turbine
,”
Proc. Inst. Mech. Eng., Part A
,
231
(
3
), pp.
197
214
.
26.
Ghisu
,
T.
,
Puddu
,
P.
,
Cambuli
,
F.
, and
Virdis
,
I.
,
2017
, “
On the Hysteretic Behaviour of Wells Turbines
,”
Energy Procedia
,
126
, pp.
706
713
.
27.
Ghisu
,
T.
,
Puddu
,
P.
,
Cambuli
,
F.
,
Mandas
,
N.
,
Seshadri
,
P.
, and
Parks
,
G.
,
2018
, “
Discussion on ‘Performance Analysis of Wells Turbine Blades Using the Entropy Generation Minimization Method’ by Shehata, A. S., Saqr, K. M., Xiao, Q., Shahadeh, M. F. and Day, A
,”
Renewable Energy
,
118
, pp.
386
392
.
28.
Ghisu
,
T.
,
Cambuli
,
F.
,
Puddu
,
P.
,
Mandas
,
N.
,
Seshadri
,
P.
, and
Parks
,
G.
,
2018
, “
Numerical Evaluation of Entropy Generation in Isolated Airfoils and Wells Turbines
,”
Meccanica
,
53
(
14
), pp.
3437
3456
.
29.
Doebelin
,
E. O.
, and
Manik
,
D. N.
,
2007
,
Measurement Systems: Application and Design
(McGraw-Hill Series in Mechanical Engineering), 5th ed.,
Tata McGraw-Hill Education
,
New Delhi
.
30.
Virdis
,
I.
,
Ghisu
,
T.
,
Cambuli
,
P.
, and
Puddu
,
P.
,
2018
, “
A Lumped Parameter Model for the Study of Dynamic Effects in Wells Turbines
,”
Energy Procedia
,
148
, pp.
503
510
.
You do not currently have access to this content.