Safety factors required to control fatigue damage of deepwater metallic risers caused by vortex-induced vibration (VIV) are considered. Four different riser configurations are studied: Cases I and II: Vertical tensioned 12in. risers suspended from a spar buoy at water depths of 500 and 1500m. Cases III and IV: Steel catenary risers suspended from a spar buoy, both at 1000m. For Case III, the riser diameter is 12in., while for Case IV it is 33in. For each riser configuration, relevant design and analysis parameters which are subject to uncertainty are identified. For these quantities, random variables are established also representing model uncertainties. Subsequently, repeated analyses of fatigue damage are performed by varying the input parameters within representative intervals. The results are applied to fit analytical expressions (i.e., so-called response surfaces) utilized to describe the limit state function and to develop the probabilistic model for reliability analysis of the risers. By combining the random variables for the input parameters with the results from the parameter variations, a relationship between the fatigue safety factor and the failure probability is established for each riser configuration.

1.
Vikestad
,
K.
, 1998, “
Multi-Frequency Response of a Cylinder Subjected to Vortex Shedding and Support Motions
,” Dr. Ing. Thesis at Department of Marine Structures, NTNU.
2.
Offshore Standard DNV-OS-F201
, 2001, “
Dynamic Risers
,” DNV, Høvik.
3.
Recommended Practice DNV-RP-F105
, 2001, “
Free Spanning Pipelines
,” Draft, September.
4.
Guide for Building and Classing Subsea Pipeline Systems and Risers
,” 2001, ABS.
5.
Wirsching
,
P.
, 1984, “
Fatigue Reliability for Offshore Structures
,”
ASCE J. Struct. Div.
,
110
(
10
), pp.
2340
2356
.
6.
Stahl
,
B.
, 2000, “
Fatigue Safety Factors for Deepwater Risers
,” report prepared for BP Deepwater Underwater Technology Group, Houston, TX;
Stahl
,
B.
, and
Banon
,
H.
, 2002, “
Fatigue Safety Factor for Deepwater Risers
,”
Proc. OMAE
, Paper no. 28405, Olso.
7.
Halse
,
K. H.
, 2000, “
Norwegian Deepwater Programme. Riser & Mooring Project. Improved VIV Predictions. Summary Report
,” Statoil Report.
8.
Meling
,
T. S.
,
Eik
,
K. J.
, and
Nygaard
,
E.
, 2002, “
An Assessment of EOF Current Scatter Diagrams with Respect to Riser VIV Fatigue Damage
,”
Proc. OMAE
,
Oslo
, Norway.
You do not currently have access to this content.