Abstract

The growing role of nuclear radiation in various domains necessitated a continuous development in enhancing the efficiency of radiation shielding materials. Generally, a shield that can attenuate thermal and fast neutrons and gamma rays simultaneously is the most effective in various applications. Therefore, in this article, a host glass of sodium silicate (labelled as BSiBi0) was reinforced by 10, 20, 30, and 40 mol. % of each of Bi and B ions simultaneously (BSiBi1, BSiBi2, BSiBi3, and BSiBi4, respectively) to produce an integrated shield capable of attenuating thermal and fast neutrons and gamma rays. To check the attenuation ability of the proposed glasses, fast neutrons removal cross section ΣF, thermal neutrons total macroscopic cross section ΣTh, total mass attenuation coefficients μm, linear attenuation coefficients μ, mean free paths (MFP), half-value layers (HVL), effective atomic numbers (Zeff), effective electron densities (Neff), and buildup factors for energy absorption (EABF) and exposure buildup factor (EBF) were studied extensively. Compared to the host glass (BSiBi0), the attenuation of gamma rays in the BSiBi4 glass (40 mol. % of each of Bi2O3 and B2O3) improved by 3.9–92.5% in the studied energy range, which extended to 100 GeV. At the same time, its ability to attenuate the fast neutrons enhanced by 86.0%, and thermal neutrons by 1402.4%. Hence, the BSiBi4 glass, with a composition of 20SiO2-40B2O3-40Bi2O3, was nominated as an efficient shield in relevant applications, such as hot cells, radiotherapy rooms, and the immobilization and disposal of radioactive wastes, due to its high attenuation ability for both neutrons and gamma rays.

References

1.
Saeed
,
A.
,
El Shazly
,
R. M.
,
Elbashar
,
Y. H.
,
Abou El-Azm
,
A. M.
,
Comsan
,
M. N. H.
,
El-Okr
,
M. M.
, and
Kansouh
,
W. A.
,
2020
, “
Glass Materials in Nuclear Technology for Gamma Ray and Neutron Radiation Shielding: A Review
,”
Nonlinear Opt., Quantum Opt.
,
53
, pp.
7
159
.https://www.researchgate.net/publication/376409782_Glass_Materials_in_Nuclear_Technology_for_Gamma_Ray_and_Neutron_Radiation_Shielding_a_Review
2.
Saeed
,
A.
, and
Abu Raia
,
W. A.
,
2022
, “
Silicone Rubber Composite Reinforced by Bismuth Tungsten Oxide as an Effective Gamma Ray Protective Materials
,”
J. Polym. Res.
,
29
(
5
), p.
208
.10.1007/s10965-022-03055-w
3.
Al-Hadeethi
,
Y.
, and
Sayyed
,
M. I.
,
2020
, “
A Comprehensive Study on the Effect of TeO2 on the Radiation Shielding Properties of TeO2–B2O3–Bi2O3–LiF–SrCl2 Glass System Using Phy-X/PSD Software
,”
Ceram. Int.
,
46
(
5
), pp.
6136
6140
.10.1016/j.ceramint.2019.11.078
4.
Kilic
,
G.
,
Ilik
,
E.
,
Mahmoud
,
K. A.
,
El-Mallawany
,
R.
,
El-Agawany
,
F. I.
, and
Rammah
,
Y. S.
,
2020
, “
Novel Zinc Vanadyl Boro-Phosphate Glasses: ZnO–V2O5–P2O5–B2O3: Physical, Thermal, and Nuclear Radiation Shielding Properties
,”
Ceram. Int.
,
46
(
11
), pp.
19318
19327
.10.1016/j.ceramint.2020.04.272
5.
Bagheri
,
R.
, and
Adeli
,
R.
,
2020
, “
Gamma-Ray Shielding Properties of Phosphate Glasses Containing Bi2O3, PbO, and BaO in Different Rates
,”
Radiat. Phys. Chem.
,
174
, p.
108918
.10.1016/j.radphyschem.2020.108918
6.
Allahmoradi
,
N.
,
Baghshahi
,
S.
, and
Rajabi
,
M.
,
2018
, “
Theoretical and Experimental Study of PbO-SiO2-Sb2O3 Glasses as Gamma Ray Shielding Materials
,”
J. Aust. Ceram. Soc.
,
54
(
3
), pp.
459
465
.10.1007/s41779-017-0172-1
7.
Saeed
,
A.
,
Elbashar
,
Y. H.
, and
El Khameesy
,
S. U.
,
2018
, “
A Novel Barium Borate Glasses for Optical Applications
,”
Silicon
,
10
(
2
), pp.
569
574
.10.1007/s12633-016-9492-y
8.
Saeed
,
A.
,
Elbashar
,
Y. H.
, and
El Kameesy
,
S. U.
,
2018
, “
Optical Spectroscopic Analysis of High-Density Lead Borosilicate Glasses
,”
Silicon
,
10
(
2
), pp.
185
189
.10.1007/s12633-015-9391-7
9.
Saeed
,
A.
,
Elbashar
,
Y. H.
, and
El Khameesy
,
S. U.
,
2015
, “
Study of Gamma Ray Attenuation of High-Density Bismuth Silicate Glass for Shielding Applications
,”
Res. J. Pharm., Biol. Chem. Sci.
,
6
, p.
1830
.https://www.academia.edu/72995647/Study_of_Gamma_Ray_Attenuation_of_High_Density_Bismuth_Silicate_Glass_for_Shielding_Applications
10.
Chang
,
L.
,
Zhang
,
Y.
,
Liu
,
Y.
,
Fang
,
J.
,
Luan
,
W.
,
Yang
,
X.
, and
Zhang
,
W.
,
2015
, “
Preparation and Characterization of Tungsten/Epoxy Composites for γ-Rays Radiation Shielding
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
,
356–357
, pp.
88
93
.10.1016/j.nimb.2015.04.062
11.
Saeed
,
A. A.
,
El Shazly
,
R. M.
,
El-Okr
,
M. M.
,
El-Azm
,
A. M. A.
,
Elbashar
,
Y. H.
,
Comsan
,
M. N. H.
,
Kansouh
,
W. A.
, and
El-Sersy
,
A. R.
,
2017
, “
Neutron Shielding Properties of a Borated High-Density Glass
,”
Nucl. Technol. Radiat. Prot.
,
32
(
2
), pp.
120
126
.10.2298/NTRP1702120S
12.
Alomari
,
A. H.
, and
Al-Qahtani
,
S. M.
,
2024
, “
Enhanced Gamma Shielding Properties of Borosilicate Glasses With Gd2O3 Addition: A Theoretical Study Using Phy-X/PSD and XCOM Programs
,”
J. Radiat. Res. Appl. Sci.
,
17
(
3
), p.
100996
.10.1016/j.jrras.2024.100996
13.
Alfryyan
,
N.
,
Alomari
,
A. H.
,
Alrowaili
,
Z. A.
,
Somaily
,
H. H.
,
Olarinoye
,
I. O.
,
Mutuwong
,
C.
,
Al-Qais
,
S.
, and
Al-Buriah
,
M. S.
,
2022
, “
Optical Transmission Quality and Radiation Protection Relevance of TeO2-ZnO-Yb2O3-ZnCl Glass System
,”
Optik
,
270
, p.
170050
.10.1016/j.ijleo.2022.170050
14.
Hafez
,
S.
,
El-Kameesy
,
S.
,
Eissa
,
M.
,
Elshazly
,
R.
,
Elfawkhry
,
M.
, and
Saed
,
A.
,
2019
, “
The Effect of Boron and Titanium Addition on The Behavior of Steel Alloys of Base Composition AISI304Mo as A Nuclear Radiation Shielding Material
,”
Arab J. Nucl. Sci. Appl.
,
52
(
4
), pp.
36
44
.10.21608/ajnsa.2019.5818.1131
15.
Saeed
,
A.
,
El Shazly
,
R. M.
,
Elbashar
,
Y. H.
,
Abou El-Azm
,
A. M.
,
El-Okr
,
M. M.
,
Comsan
,
M. N. H.
,
Osman
,
A. M.
,
Abdal-Monem
, and
A. M.
,
El-Sersy
, and
A. R.
,
2014
, “
Gamma Ray Attenuation in a Developed Borate Glassy System
,”
Radiat. Phys. Chem.
,
102
, pp.
167
170
.10.1016/j.radphyschem.2014.04.032
16.
Singh
,
G. P.
,
Singh
,
J.
,
Kaur
,
P.
,
Kaur
,
S.
,
Arora
,
D.
,
Kaur
,
R.
,
Kaur
,
K.
, and
Singh
,
D. P.
,
2020
, “
Analysis of Enhancement in Gamma Ray Shielding Proficiency by Adding WO3 in Al2O3-PbO-B2O3 Glasses Using Phy-X/PSD
,”
J. Mater. Res. Technol.
,
9
(
6
), pp.
14425
14442
.10.1016/j.jmrt.2020.10.020
17.
Lakshminarayana
,
G.
,
Kebaili
,
I.
,
Dong
,
M. G.
,
Al-Buriahi
,
M. S.
,
Dahshan
,
A.
,
Kityk
,
I. V.
,
Lee
,
D. E.
,
Yoon
,
J.
, and
Park
,
T.
,
2020
, “
Estimation of Gamma-Rays, and Fast and The Thermal Neutrons Attenuation Characteristics for Bismuth Tellurite and Bismuth Boro-Tellurite Glass Systems
,”
J. Mater. Sci.
,
55
(
14
), pp.
5750
5771
.10.1007/s10853-020-04446-4
18.
Almuqrin
,
A. H.
,
Kumar
,
A.
,
Alasali
,
H. J.
, and
Sayyed
,
M. I.
,
2023
, “
Impact of High Concentration of The Bi2O3 on The Physical, Mechanical and Gamma Ray Shielding Capability of The Bi2O3–TeO2–CdO Glass System
,”
J. Mater. Sci.: Mater. Electron.
,
34
, p.
1112
.10.1007/s10854-023-10529-0
19.
] Ratep
,
A.
,
Abdelaziem
,
A.
,
Hanfi
,
M. Y.
,
Mahmoud
,
K. A.
, and
Kashi
,
I.
,
2024
, “
Enhancing Gamma–Ray Shielding With Bismuth Oxide–Infused Boron Oxides
,”
Opt. Quantum Electron.
,
56
, p.
143
.10.1007/s11082-023-05788-4
20.
Thabit
,
H. A.
,
Ismail
,
A. K.
,
Saeed
,
A.
,
Abdulmalik
,
D. A.
,
Bafaqeer
,
A.
,
Naeem
,
H. S.
, and
Sayyed
,
M. I.
,
2024
, “
Enhancing Gamma-Ray Shielding With Bi2O3-Enriched BTBi Glasses: Optimal Balance of Attenuation and Glass Transparency
,”
Ceram. Int.
,
50
(
16
), pp.
28652
28661
.10.1016/j.ceramint.2024.05.176
21.
Şakar
,
E.
,
Özpolat
,
Ö. F.
,
Alım
,
B.
,
Sayyed
,
M. I.
, and
Kurudirek
,
M.
,
2020
, “
Phy-X/PSD: Development of a User-Friendly Online Software for Calculation of Parameters Relevant to Radiation Shielding and Dosimetry
,”
Radiat. Phys. Chem.
,
166
, p.
108496
.10.1016/j.radphyschem.2019.108496
22.
Hila
,
F. C.
,
Asuncion-Astronomo
,
A.
,
Dingle
,
C. A. M.
,
Jecong
,
J. F. M.
,
Javier-Hila
,
A. M. V.
,
Gili
,
M. B. Z.
,
Balderas
,
C. V.
,
Lopez
,
G. E. P.
,
Guillermo
,
N. R. D.
, and
Amorsolo
, and
A. V.
, Jr.
,
2021
, “
EpiXS: A Windows-Based Program for Photon Attenuation, Dosimetry and Shielding Based on EPICS2017 (ENDF/B-VIII) and EPDL97 (ENDF/B-VI.8)
,”
Radiat. Phys. Chem.
,
182
, p.
109331
.10.1016/j.radphyschem.2020.109331
23.
Berger
,
M. J.
, and
Hubbell
,
J. H.
,
1987
, “
XCOM: Photon Cross Sections Database, Web Version 1.2
,” National Institute of Standards and Technology, Gaithersburg, MD, accessed Apr. 2024, http://physics.nist.gov/xcom
24.
Loretz
,
R. A.
,
Loretz
,
T. J.
, and
Richardson
,
K. A.
,
2022
, “
Predictive Method to Assess Chalcogenide Glass Properties: Bonding, Density and The Impact on Glass Properties
,”
Opt. Mater. Express
,
12
(
5
), pp.
2012
2027
.10.1364/OME.455523
25.
Alotaibi
,
B. M.
,
Abouhaswa
,
A. S.
,
Sayyed
,
M. I.
,
Mahmoud
,
K. A.
,
Al-Yousef
,
H. A.
,
Hila
,
F. C.
, and
Al-Hadeethi
,
Y.
,
2021
, “
Structural, Optical, and Gamma-Ray Shielding Properties of a Newly Fabricated P2O5–B2O3–Bi2O3–Li2O–ZrO2 Glass System
,”
Eur. Phys. J. Plus
,
136
(
2
), p.
224
.10.1140/epjp/s13360-020-01064-6
26.
Al-Yousef
,
H. A.
,
Alotiby
,
M.
,
Hanfi
,
M. Y.
,
Alotaibi
,
B. M.
,
Mahmoud
,
K. A.
,
Sayyed
,
M. I.
, and
Al-Hadeethi
,
Y.
,
2021
, “
Effect of the Fe2O3 Addition on The Elastic and Gamma Ray Shielding Features of Bismuth Sodium-Borate Glass System
,”
J. Mater. Sci.: Mater. Electron.
,
32
(
6
), pp.
6942
6954
.10.1007/s10854-021-05400-z
27.
Sayyed
,
M. I.
,
Lakshminarayana
,
G.
,
Kityk
,
I. V.
, and
Mahdi
,
M. A.
,
2017
, “
Evaluation of Shielding Parameters for Heavy Metal Fluoride-Based Tellurite-Rich Glasses for Gamma Ray Shielding Applications
,”
Radiat. Phys. Chem.
,
139
, pp.
33
39
.10.1016/j.radphyschem.2017.05.013
28.
El-Kameesy
,
S. U.
,
Eissa
,
M. M.
,
El-Fiki
,
S. A.
,
El Shazly
,
R. M.
,
Ghali
,
S. N.
, and
Saeed
,
A.
,
2017
, “
A Phenomenological Study on The Gamma Rays Attenuation Properties of Developed Steel Alloys
,”
Arab J. Nucl. Sci. Appl.
,
50
(
1
), pp.
1
9
.https://www.researchgate.net/profile/Raed-El-Shazly/publication/335396936_A_Phenomenological_Study_on_the_Gamma_Rays_Attenuation_Properties_of_Developed_Steel_Alloys/links/5db17b8092851c577eba7932/A-Phenomenological-Study-on-the-Gamma-Rays-Attenuation-Properties-of-Developed-Steel-Alloys.pdf
29.
Saeed
,
A.
,
Elbashar
,
Y. H.
, and
El Shazly
,
R. M.
,
2016
, “
Optical Properties of High-Density Barium Borate Glass for Gamma Ray Shielding Applications
,”
Opt. Quantum Electron.
,
48
(
1
), pp.
1
10
.10.1007/s11082-015-0274-3
30.
Amer
,
T. Z.
,
Saleh
,
S. E.
,
El Shazly
,
R. M.
,
Gomaa
,
N. S.
, and
Bahgat
,
A. A.
,
2019
, “
Study of The Physical and Nuclear Properties of Liquid PbBiCd Alloy Coolant in Nuclear Fast Reactor
,”
J. Nucl. Mater.
,
522
, pp.
226
235
.10.1016/j.jnucmat.2019.05.006
31.
Chanthima
,
N.
, and
Kaewkhao
,
J.
,
2013
, “
Investigation on Radiation Shielding Parameters of Bismuth Borosilicate Glass From 1 keV to 100 GeV
,”
Ann. Nucl. Energy
,
55
, pp.
23
28
.10.1016/j.anucene.2012.12.011
32.
Salehi
,
D.
,
Sardari
,
D.
, and
Jozani
,
M. S.
,
2015
, “
A Study of Energy Absorption and Exposure Buildup Factors in Natural Uranium
,”
Adv. Mater. Res.
,
4
(
1
), pp.
23
30
.10.12989/amr.2015.4.1.23
33.
Yinglei
,
G.
,
Guangxi
,
W.
, and
Liangquan
,
G.
,
2020
, “
Gamma-Ray Exposure Buildup-Factors Calculations for Some Radiation-Resistant and Radiation-Protective Glasses
,”
Glass Phys. Chem.
,
46
(
5
), pp.
396
399
.10.1134/S108765962005003X
34.
Alomari
,
A. H.
,
2024
, “
BaO-Doped Na2O–CaO–P2O5 Bioactive Glasses: A Closer Look at Radiation Attenuation Properties for Medical Applications
,”
Radiat. Phys. Chem.
,
223
, p.
112019
.10.1016/j.radphyschem.2024.112019
35.
Alrowaili
,
Z. A.
,
Alwadai
,
N.
,
Eke
,
C.
,
Alomari
,
A. H.
,
Olarinoye
,
I. O.
,
Mutuwong
,
C.
,
Al-Qaisi
,
S.
, and
Al-Buriahi
,
M. S.
,
2022
, “
Influence of BaO/ZnCl2 Content on Gamma Transmission Properties of the Optical TeO2-Based Glass System
,”
Optik
,
270
, p.
170054
.10.1016/j.ijleo.2022.170054
36.
Dong
,
M. G.
,
Xue
,
X. X.
,
Singh
,
V. P.
,
Yang
,
H.
,
Li
,
Z. F.
, and
Sayyed
,
M. I.
,
2018
, “
Shielding Effectiveness of Boron-Containing Ores in Liaoning Province of China Against Gamma Rays and Thermal Neutrons
,”
Nucl. Sci. Tech.
,
29
(
4
), p.
58
.10.1007/s41365-018-0397-x
37.
Lakshminarayana
,
G.
,
Tekin
,
H. O.
,
Dong
,
M. G.
,
Al-Buriahi
,
M. S.
,
Lee
,
D. E.
,
Yoon
,
J.
, and
Park
,
T.
,
2022
, “
Comparative Assessment of Fast and Thermal Neutrons and Gamma Radiation Protection Qualities Combined With Mechanical Factors of Different Borate-Based Glass Systems
,”
Results Phys.
,
37
, p.
105527
.10.1016/j.rinp.2022.105527
38.
Aloraini
,
D. A.
,
Abu-Raia
,
W. A.
, and
Saeed
,
A.
,
2024
, “
An Efficient Attenuator for Gamma Rays and Slow Neutrons of Elastic and Transparent Lead Sodium Zinc Calcium Borate Glass
,”
Opt. Quantum Electron.
,
56
(
3
), p.
340
.10.1007/s11082-023-06000-3
39.
Zeed
,
M. A.
,
El Shazly
,
R. M.
,
Elesh
,
E.
,
El-Mallah
,
H. M.
, and
Saeed
,
A.
,
2024
, “
Gamma Rays and Neutrons Attenuation Performance of a Developed Lead Borate Glass for Radiotherapy Room
,”
Radiat. Prot. Dosim.
,
200
(
4
), pp.
355
367
.10.1093/rpd/ncad313
40.
Alomari
,
A. H.
,
2024
, “
Elucidating the Multiple Contributions of Increasing MoO3 Concentration on Phosphate Glasses for Radiation Safety Applications
,”
Radiat. Phys. Chem.
,
218
, p.
111593
.10.1016/j.radphyschem.2024.111593
41.
Alomari
,
A. H.
,
2024
, “
Enhancing Radiation Shielding Effectiveness: A Comparative Study of Barium-Doped Tellurite Glasses for Gamma and Neutron Radiation Protection
,”
J. Taibah Univ. Sci.
,
18
(
1
), p.
2328370
.10.1080/16583655.2024.2328370
42.
Zakaly
,
H. M. H.
,
Tekin
,
H. O.
,
Rammah
,
Y. S.
,
Issa
,
S. A. M.
,
Alomari
,
A. H.
,
Ali
,
F. T.
,
Baykal
,
D. S.
, et al.,
2022
, “
Physical Features of High-Density Barium–Tungstate–Phosphate (BTP) Glasses: Elastic Moduli, and Gamma Transmission Factors
,”
Electronics
,
11
(
24
), p.
4095
.10.3390/electronics11244095
43.
Alharshan
,
G. A.
,
Alrowaili
,
Z. A.
,
Alomari
,
A. H.
,
Boukhris
,
I.
,
Eke
,
C.
,
Olarinoye
,
I. O.
, and
Al-Buriahi
,
M. S.
,
2023
, “
Radiation Shielding Capacity of Li2O-SiO2/GeO2 Glasses Doped With Rare Earth Oxides: Nuclear Security Applications
,”
Radiat. Phys. Chem.
,
204
, p.
110703
.10.1016/j.radphyschem.2022.110703
44.
Akkurt
,
I.
,
Alomari
,
A.
,
Imamoglu
,
M. Y.
, and
Ekmekçi
,
I.
,
2023
, “
Medical Radiation Shielding in Terms of Effective Atomic Numbers and Electron Densities of Some Glasses
,”
Radiat. Phys. Chem.
,
206
, p.
110767
.10.1016/j.radphyschem.2023.110767
45.
Alrowaili
,
Z. A.
,
Alomari
,
A. H.
,
Al-Qaisi
,
S.
,
Alwadai
,
N.
,
Eke
,
C.
,
Olarinoye
,
I. O.
,
Mutuwong
,
C.
, and
Al-Buriahi
,
M. S.
,
2023
, “
Silicate Glass System and Significant Role of Bi2O3 on Radiation Protection Ability Against Gamma, Neutron, and Charged Particle
,”
Radiat. Phys. Chem.
,
203
, p.
110609
.10.1016/j.radphyschem.2022.110609
You do not currently have access to this content.