Abstract

This paper deals with a general methodology to evaluate the Source Term (ST) and the Radiological Consequences (RC) of a hypothetical Severe Accident (SA) at a Fukushima-like Spent Fuel Pool (SFP) by coupling ASTEC 2.1 and RASCAL 4.3 SA and consequence projections (CP) codes, respectively. The methodology consists of the following sequential steps: the ST provided by a prior simulation performed by ASTEC V2.1 code was used as input to RASCAL 4.3 code to make a RC analysis. This approach was developed as a preparatory study for the Management and Uncertainties in Severe Accident (MUSA) H2020 European Project, coordinated by CIEMAT, where the ENEA's Nuclear Installations safety laboratory is committed to performing an analysis on a Fukushima-like SFP with the aim to apply innovative management of SFP accidents (WP6) to mitigate the RC of the accident itself. To perform the RC studies that could have an impact on Italy, a Fukushima-like SFP was assumed located in one of the Italian cross-border NPP sites. The weather data adopted are both standard and real hourly meteorological data taken from more than one geographical location. The results of the RC for 96 h of ST release in a range of 160 km from the emission point are reported in terms of Total Effective Dose Equivalent (TEDE), Thyroid dose, and Cs-137 total ground deposition. The mitigating effect on ST and on RC of the cooling spray system (CSS) actuated with several pH values (i.e., 4,7,10) was also investigated.

References

1.
Nuclear Energy Agency, Committee on the Safety of Nuclear Installation
,
2015
, “
Status Report on SFPs Under Loss-of-Cooling and Loss-of-Coolant Accident Conditions
,” Nuclear Energy Agency, Paris, France, Report No. NEA/CSNI/R(2015)2, p.
203
, accessed May 18, 2022, https://www.oecd-nea.org/jcms/pl_19596/status-report-on-spent-fuel-pools-under-loss-of-coolant-accident-conditions-final-report?details=true
2.
Nowack
,
H.
,
Chatelard
,
P.
,
Chailan
,
L.
,
Hermsmeyer
,
S.
,
Sanchez
,
V.
, and
Herranz
,
L.
,
2018
, “
CESAM ‐ Code for European Severe Accident Management, EURATOM Project on ASTEC Improvement
,”
Ann. Nucl. Eng.
,
116
, pp.
128
136
.10.1016/j.anucene.2018.02.021
3.
Guglielmelli
,
G.
, and
Rocchi
,
F.
,
2014
, “
FAST-1: Evaluation of the Fukushima Accident Source Term Through the Fast-Running Code RASCAL 4.2: Methods & Results
,” ENEA, Stockholm, Sweden, ENEA Technical Report No. UTFISSM-P000-017, p.
24
, accessed May 18, 2022, https://iris.enea.it/retrieve/handle/20.500.12079/7612/1275/UTFISSM-P000-017_rev.1.pdf
4.
Ramsdell
,
J. V.
,
Athey
,
G. F.
,
McGuide
,
S. A.
, and
Brandon
,
L. K.
,
2012
, “
RASCAL 4: Description of Models and Methods, U.S. Nuclear Regulatory Commission, Office of Nuclear Security and Incident Response
,” U.S. Nuclear Regulatory Commission, Washington, DC, Report No. NUREG-1940, p.
225
, accessed May 18, 2022, https://www.nrc.gov/docs/ML1303/ML13031A448.pdf
5.
Obeng
,
H. K.
,
Birikorang
,
S. A.
,
Gyamfi
,
K.
,
Adu
,
S.
, and
Nyamful
,
A.
,
2021
, “
Assessment of Radiological Consequence of a Hypothetical Accident at the Ghana Research Reactor-I Facility Based on Terrorist Attack
,”
Sci. Prog.
,
104
(
4
), pp.
1
24
.10.1177/00368504211054986
6.
Pappas
,
C.
,
Ikonomopoulos
,
A.
,
Sfetsos
,
A.
,
Andronopoulos
,
S.
,
Varvayanni
,
M.
, and
Catsaros
,
N.
,
2014
, “
Derivation of the Source Term, Dose Results and Associated Radiological Consequences for the Greek Research Reactor - 1
,”
Nucl. Eng. Des.
,
274
, pp.
100
117
.10.1016/j.nucengdes.2014.04.008
7.
Raja Shekhar
,
S. S.
,
Venkata Srinivas
,
C.
,
Rakesh
,
P. T.
,
Venkatesan
,
R.
, and
Venkatraman
,
B.
,
2020
, “
Radiological Consequence Assessments Using Time-Varying Source Terms in ONERS- Decision Support System for Nuclear Emergency Response
,”
Prog. Nucl. Energy
,
127
, p.
103436
.10.1016/j.pnucene.2020.103436
8.
Kim
,
S.
,
Lee
,
K.
,
Park
,
S.
,
Han
,
S.
,
Ahn
,
K.
, and
Hwang
,
S.
,
2022
, “
Interfacing Between MAAP and MACCS to Perform Radiological Consequences Analysis
,”
Nucl. Eng. Technol.
,
54
(
4
), pp.
1516
1525
.10.1016/j.net.2021.10.001
9.
Van Dorsselaere
,
J.-P.
,
Auvinen
,
A.
,
Beraha
,
D.
,
Chatelard
,
P.
,
Herranz
,
L. E.
,
Journeau
,
C.
,
Klein-Hessling
,
W.
,
et al.
,
2015
, “
Recent Severe Accident Research Synthesis of the Major Outcomes From the SARNET Network
,”
Nucl. Eng. Des.
,
291
, pp.
19
34
.10.1016/j.nucengdes.2015.03.022
10.
Mascari
,
F.
,
De La Rosa Blul
,
J. C.
, and
Sangiorgi
,
M.
,
2019
, “
Analyses of an Unmitigated Station Blackout Transient in a Generic PWR-900 With ASTEC, MAAP and MELCOR Codes
,” U.S. Nuclear Regulatory Commission, Washington, DC, Report No.
NUREG/IA-0515
.https://www.nrc.gov/reading-rm/doc-collections/nuregs/agreement/ia0515/index.html
11.
Ramsell
,
J. V.
, Jr.
,
Athey
,
G. F.
, and
Rishel
,
J. P.
,
2015
, “
RASCAL 4.3: Descriptions of Models and Methods (NUREG-1940, Supplement 1)
,” U.S. Office of Nuclear Regulatory Research, Washington, DC, accessed May 18, 2022, https://www.nrc.gov/docs/ML1303/ML13031A448.pdf
12.
Tombette
,
M.
,
Quentric
,
E.
,
Quelo
,
D.
,
Benoit
,
J. P.
,
Mathieu
,
A.
,
Korsakissok
,
I.
, and
Didier
,
D.
,
2014
, “
C3X: A Software Platform for Assessing the Consequences of an Accidental Release of Radioactivity Into the Atmosphere
,”
Poster Presented at Fourth European IRPA Congress
, Geneva, Switzerland, June 23–27.http://venus.iis.u-tokyo.ac.jp/english/workshop/Poster/3rd%20March/Damien%20Didier.pdf
13.
Chatelard
,
P.
,
Belon
,
S.
,
Bosland
,
L.
,
Carénini
,
L.
,
Coindreau
,
O.
,
Cousin
,
F.
,
Marchetto
,
C.
,
Nowack
,
H.
,
Piar
,
L.
, and
Chailan
,
L.
,
2016
, “
Main Modelling Features of the ASTEC V2.1 Major Version
,”
Ann. Nucl. Energy
,
93
, pp.
83
93
.10.1016/j.anucene.2015.12.026
14.
Coindreau
,
O.
,
Jäckel
,
B.
,
Rocchi
,
F.
,
Alcaro
,
F.
,
Angelova
,
D.
,
Bandini
,
G.
,
Barnak
,
M.
,
2018
, “
Severe Accident Code-to-Code Comparison for Two Accident Scenarios in an SFP
,”
Ann. Nucl. Energy
,
120
, pp.
880
887
.10.1016/j.anucene.2018.06.043
15.
Herranz
,
L. H.
,
Beck
,
S.
,
Sànchez-Espinoza
,
V. H.
,
Mascari
,
F.
,
Brumm
,
S.
,
Coindreau
,
O.
, and
Paci
,
S.
,
2021
, “
The EC MUSA Project on Management and Uncertainty of Severe Accidents: Main Pillars and Status
,”
Energies
,
14
(
15
), p.
4473
.10.3390/en14154473
16.
Gómez-García-Toraño
,
I.
, and
Laborde
,
L.
,
2019
, “
Validation of the Cesar Friction Models of the ASTECV2.1 Code Based on Moby Dick Experiments
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
5
(
2
), pp.
1
9
.10.1115/1.4042119
17.
Gómez-García-Toraño
,
I.
,
Laborde
,
L.
, and
Zambaux
,
J.
,
2018
, “
Overview of the Cesar Thermohydraulic Module of ASTEC V2.1 and Selected Validation Studies
,” Proceedings of the 18th International Youth Nuclear Congress (
IYNC2018
), Bariloche, Argentina, Mar. 11–17, pp.
11
17
.https://www.researchgate.net/publication/324091223_Overview_of_the_CESAR_thermalhydraulic_module_of_ASTEC_V21_and_selected_validation_studies
18.
Cantrel
,
L.
,
Cousin
,
F.
,
Bosland
,
L.
,
Chevalier-Jabet
,
K.
, and
Marchetto
,
C.
,
2014
, “
ASTEC V2 Severe Accident Integral Code: Fission Product Modelling and Validation
,”
Nucl. Eng. Des.
,
272
, pp.
195
206
.10.1016/j.nucengdes.2014.01.011
19.
Cousin
,
F.
,
Dieschbourg
,
K.
, and
Jacq
,
F.
,
2008
, “
New Capabilities of Simulating Fission Product Transport in Circuits With ASTEC/SOPHAEROS v.1.3
,”
Nucl. Eng. Des.
,
238
(
9
), pp.
2430
2438
.10.1016/j.nucengdes.2008.03.018
20.
Rearden
,
B. T.
, and
Jessee
,
M. A.
,
2018
, “
SCALE Code System
,” ORNL/TM-2005/39, Version 6.2.3, accessed May 18, 2022, https://www.ornl.gov/sites/default/files/SCALE_6.2.3.pdf
21.
Guglielmelli
,
A.
, and
Rocchi
,
F.
,
2017
, “
Evaluation of the Radiological Impact on the italian Territory of a SA at Krško NPP by Means of a Statistical Methodology
,” Proceedings of the 26th International Conference Nuclear Energy for New Europe (
NENE2017
), Bled, Slovenia, Sept. 11–14, p.
9
.https://arhiv.djs.si/proc/nene2017/html/pdf/NENE2017_806.pdf
22.
Athey
,
G. F.
,
Brandson
,
L. K.
, and
Ramsdell
,
J. V.
, Jr.
,
2013
, “
RASCAL 4.3 Workbook, U.S. Nuclear Regulatory Commission
,” Office of Nuclear Regulatory Research, Washington, DC
, accessed May 18, 2022, https://www.nrc.gov/docs/ML1328/ML13281A475.pdf
23.
Edokpa
,
D. O.
, and
Nwagbara
,
M. O.
,
2017
, “
Atmospheric Stability Pattern Over Port Harcourt, Nigeria
,”
J. Atmos. Pollut.
,
5
(
1
), pp.
9
17
.10.12691/jap-5-1-2
24.
Ramsdell
,
J. V.
, Jr.
,
2014
, “
RASCAL 4.3 Dispersion and Deposition Models
,” 18th Annual George Mason University Conference on Atmospheric Transport and Dispersion Modeling, Fairfax, VA, accessed May 18, 2022, https://www.icams-portal.gov/meetings/atd/gmu2014/pdf/04-GMU_Ramsdell_RASCAL-4-3_Dispersion-and-Iodine-Models.pdf
25.
Zanetti
,
P.
,
2013
,
Air Pollution Modeling: Theories, Computational Methods and Available Software
,
Springer
, New York, pp.
249
262
.
26.
Rossi
,
F.
,
Guglielmelli
,
A.
, and
Rocchi
,
F.
,
2015
, “
Impact of a Security Event at a TRIGA Reactor
,”
Ann. Nucl. Energy
,
76
, pp.
125
136
.10.1016/j.anucene.2014.09.030
27.
Ashmore
,
C. B.
,
Gwyther
,
J. R.
, and
Sims
,
H. E.
,
1996
, “
Some Effects of pH on Inorganic Iodine Volatility in Containment
,”
Nucl. Eng. Des.
,
166
(
3
), pp.
347
355
.10.1016/S0029-5493(96)01252-6
28.
Bosland
,
L.
,
Cantrel
,
L.
,
Girault
,
N.
, and
Clement
,
B.
,
2010
, “
Modeling of Iodine Radiochemistry in the ASTEC Code: Description and Application to FPT-2 Phebus Test
,”
Nucl. Technol.
,
171
(
1
), pp.
88
107
.10.13182/NT10-A10774
29.
Beninson
,
D.
,
Jammet
,
H.
, and
Smith
,
H.
,
1991
, “
1990 Recommendation of the International Commission on Radiological Protection
,” ICRP Publication 60,
Pergamon Press
, Oxford, UK, p.
211
.
30.
Domenech
,
H.
,
2020
, “
Radiation Safety, Chapter 16
,”
Management and Programs
, Springer Nature AG, Cham, Switzerland
.
31.
Presidenza del Consiglio dei Ministri, Dipartimento della Protezione Civile, CEVaD,
2010
, “
Manuale per le Valutazioni Dosimetriche e le Emergenze Ambientali
,” CEVaD, Rome, Italy,
accessed May 18, 2022, https://www.isprambiente.gov.it/files/pubblicazioni/manuali-lineeguida/3447_MLG_57_2010pdf
You do not currently have access to this content.