Abstract

Surface wettability is an important parameter that affects nucleate boiling. Irradiation can alter the surface wettability on metal surfaces without altering the surface macrostructure. The wettability characteristics of indium tin oxide and TiO2 film-coated sapphire substrates following gamma-ray and electron beam irradiation were experimentally investigated. A sapphire plate was exposed to gamma rays and electron beams. Within the irradiation dose, no evident change in the sapphire surface color was found. The surface contact angle decreased after irradiation, and surface wettability was enhanced with more irradiation. After irradiation, the contact angle recovered with time. The related mechanism is possible due to the absorption/desorption of hydroxyl groups. Our results indicate that the irradiation method can be used in indium tin oxide film-coated sapphire experiments to study nucleate boiling.

References

1.
Cassie
,
A. B. D.
, and
Baxter
,
S.
,
1944
, “
Wettability of Porous Surfaces
,”
Trans. Faraday Society
,
40
, pp.
546
551
.10.1039/tf9444000546
2.
Liu
,
Z.
,
Xiong
,
J.
, and
Bao
,
R.
,
2007
, “
Boiling Heat Transfer Characteristics of Nanofluids in a Flat Heat Pipe Evaporator With Micro-Grooved Heating Surface
,”
Int. J. Multiphase Flow
,
33
(
12
), pp.
1284
1295
.10.1016/j.ijmultiphaseflow.2007.06.009
3.
S.
Ghiaasiaan
, ed.,
2007
,
Two-Phase Flow, Boiling, and Condensation: In Conventional and Miniature Systems
,
Cambridge University Press
,
Cambridge, UK
, p.
636
.
4.
Wang
,
K.
,
Erkan
,
N.
,
Gong
,
H.
,
Wang
,
L.
, and
Okamoto
,
K.
,
2018
, “
Comparison of Pool Boiling CHF of a Polished Copper Block and Carbon Steel Block on a Declined Slope
,”
J. Nucl. Sci. Technol.
,
55
(
9
), pp.
1065
1078
.10.1080/00223131.2018.1470945
5.
You
,
S. M.
,
Kim
,
J. H.
, and
Kim
,
K. H.
,
2003
, “
Effect of Nanoparticles on Critical Heat Flux of Water in Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
83
(
16
), pp.
3374
3376
.10.1063/1.1619206
6.
Coursey
,
J. S.
, and
Kim
,
J.
,
2008
, “
Nanofluid Boiling: The Effect of Surface Wettability
,”
Int. J. Heat Fluid Flow
,
29
(
6
), pp.
1577
1585
.10.1016/j.ijheatfluidflow.2008.07.004
7.
Kim
,
H.
, and
Kim
,
M.
,
2009
, “
Experimental Study of the Characteristics and Mechanism of Pool Boiling CHF Enhancement Using Nanofluids
,”
Heat Mass Transfer
,
45
(
7
), pp.
991
998
.10.1007/s00231-007-0318-8
8.
Kandlikar
,
S. G.
,
2001
, “
A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation
,”
ASME J. Heat Transfer-Trans. ASME
,
123
(
6
), pp.
1071
1079
.10.1115/1.1409265
9.
Ramilison
,
J. H.
,
Sadasivan
,
P.
, and
Lienhard
,
J. H.
,
1992
, “
Surface Factors Influencing Burnout on Flat Heaters
,”
ASME J. Heat Transfer-Trans. ASME
,
114
(
1
), pp.
287
290
.10.1115/1.2911261
10.
Polezhaev
,
Y. V.
, and
Kovalev
,
S. A.
,
1990
, “
ModellingHeat Transfer With Boiling on Porous Structures
,”
Therm. Eng.
,
37
(
12
), pp.
617
621
.
11.
Prakash
,
C. J.
, and
Prasanth
,
R.
,
2018
, “
Enhanced Boiling Heat Transfer by Nano Structured Surfaces and Nanofluids
,”
Renewable Sustainable Energy Rev.
,
82
, pp.
4028
4043
.10.1016/j.rser.2017.10.069
12.
Phillips
,
B. A.
,
2014
, “
Experimental Investigation of Subcooled Flow Boiling Using Synchronized High Speed Video, Infrared Thermography, and Particle Image Velocimetry
,” Ph.D. thesis,
Massachusetts Institute of Technology, Department of Nuclear Science and Engineering
,
Cambridge, MA
, p.
206
.
13.
Richenderfer
,
A.
,
Kossolapov
,
A.
,
Seong
,
J. H.
,
Saccone
,
G.
,
Demarly
,
E.
,
Kommajosyula
,
R.
,
Baglietto
,
E.
,
Buongiorno
,
J.
, and
Bucci
,
M.
,
2018
, “
Investigation of Subcooled Flow Boiling and CHF Using High-Resolution Diagnostics
,”
Exp. Therm. Fluid Sci.
,
99
, pp.
35
58
.10.1016/j.expthermflusci.2018.07.017
14.
Chu
,
I. C.
,
No
,
H. C.
, and
Song
,
C. H.
,
2013
, “
Visualization of Boiling Structure and Critical Heat Flux Phenomenon for a Narrow Heating Surface in a Horizontal Pool of Saturated Water
,”
Int. J. Heat Mass Transfer
,
62
, pp.
142
152
.10.1016/j.ijheatmasstransfer.2013.02.067
15.
Gerardi
,
C.
,
Buongiorno
,
J.
,
Hu
,
L. W.
, and
McKrell
,
T.
,
2011
, “
Infrared Thermometry Study of Nanofluid Pool Boiling Phenomena
,”
Nanoscale Res. Lett.
,
6
(
1
), p.
232
.10.1186/1556-276X-6-232
16.
Jung
,
J.
,
Kim
,
S. J.
, and
Kim
,
J.
,
2014
, “
Observations of the Critical Heat Flux Process During Pool Boiling of FC-72
,”
ASME J. Heat Transfer-Trans. ASME
,
136
(
4
), p.
041501
.10.1115/1.4025697
17.
Jung
,
S.
, and
Kim
,
H.
,
2015
, “
An Experimental Study on Heat Transfer Mechanisms in the Microlayer Using Integrated Total Reflection, Laser Interferometry and Infrared Thermometry Technique
,”
Heat Transfer Eng.
,
36
(
12
), pp.
1002
1012
.10.1080/01457632.2015.979109
18.
Honjo
,
Y.
,
Furuya
,
M.
,
Takamasa
,
T.
, and
Okamoto
,
K.
,
2009
, “
Mechanism of Hydrophilicity by Radiation-Induced Surface Activation
,”
J. Power Energy Syst.
,
3
(
1
), pp.
216
227
.10.1299/jpes.3.216
19.
Koga
,
T.
,
Imai
,
Y.
,
Takamasa
,
T.
,
Okamoto
,
K.
, and
Mishima
,
K.
,
2002
, “
Radiation Induced Surface Activity Phenomenon: 2nd Report—Radiation Induced Boiling Enhancement
,”
International Conference on Nuclear Engineering
, Vol.
4
,
Arlington, VA
, Apr. 14–18, pp.
975
977
.
20.
Takamasa
,
T.
,
Hazuku
,
T.
,
Okamoto
,
K.
,
Mishima
,
K.
, and
Furuya
,
M.
,
2005
, “
Radiation Induced Surface Activation on Leidenfrost and Quenching Phenomena
,”
Exp. Therm. Fluid Sci.
,
29
(
3
), pp.
267
274
.10.1016/j.expthermflusci.2004.05.014
21.
Okamoto
,
K.
,
Akiyama
,
H.
,
Madarame
,
H.
, and
Takamasa
,
T.
,
2002
, “
Experimental Study on Radiation Induced Boiling Enhancement for Stainless Steel Plate
,”
International Conference on Nuclear Engineering
, Vol.
3
,
Arlington, VA
, Apr. 14–18, pp.
929
932
.10.1115/ICONE10-22548
22.
Sibamoto
,
Y.
,
Yonomoto
,
T.
,
Nakamura
,
H.
, and
Kukita
,
Y.
,
2007
, “
In-Pile Experiment in JMTR on the Radiation Induced Surface Activation (RISA) Effect on Flow-Boiling Heat Transfer
,”
J. Nucl. Sci. Technol.
,
44
(
2
), pp.
183
193
.10.1080/18811248.2007.9711272
23.
Gong
,
H.
,
Khan
,
A. R.
,
Erkan
,
N.
,
Wang
,
L.
, and
Okamoto
,
K.
,
2017
, “
Critical Heat Flux Enhancement in Downward-Facing Pool Boiling With Radiation Induced Surface Activation Effect
,”
Int. J. Heat Mass Transfer
,
109
, pp.
93
102
.10.1016/j.ijheatmasstransfer.2017.01.112
24.
Wang
,
K.
,
Gong
,
H.
,
Wang
,
L.
,
Erkan
,
N.
, and
Okamoto
,
K.
,
2020
, “
Irradiation Effects of CHF on Bare and Porous Honeycomb Surface in Downward-Face Saturated Pool Boiling
,”
Prog. Nucl. Energy
,
127
, p.
103444
.10.1016/j.pnucene.2020.103444
25.
Wang
,
L.
,
Wang
,
K.
,
Erkan
,
N.
,
Yuan
,
Y.
,
Chen
,
J.
,
Nie
,
B.
,
Li
,
F.
, and
Okamoto
,
K.
,
2020
, “
Metal Material Surface Wettability Increase Induced by Electron Beam Irradiation
,”
Appl. Surf. Sci.
,
511
, p.
145555
.10.1016/j.apsusc.2020.145555
26.
Chen
,
Z.
,
Hu
,
X.
,
Hu
,
K.
,
Utaka
,
Y.
, and
Mori
,
S.
,
2020
, “
Measurement of the Microlayer Characteristics in the Whole Range of Nucleate Boiling for Water by Laser Interferometry
,”
Int. J. Heat Mass Transfer
,
146
, pp.
118856
118859
.10.1016/j.ijheatmasstransfer.2019.118856
27.
Levy
,
P. W.
,
1960
, “
The Kinetics of Gamma‐Ray Induced Coloring of Glass
,”
J. Am. Ceram. Soc.
,
43
(
8
), pp.
389
395
.10.1111/j.1151-2916.1960.tb13680.x
28.
Park
,
J. W.
,
Ahn
,
J. H.
,
Kim
,
Y. C.
,
Han
,
J. M.
, and
Kim
,
J.
,
2014
, U.S. Patent No. 8,778,463.
29.
Seshadri
,
A.
,
Phillips
,
B.
, and
Shirvan
,
K.
,
2018
, “
Towards Understanding the Effects of Irradiation on Quenching Heat Transfer
,”
Int. J. Heat Mass Transfer
,
127
(
8
), pp.
1087
1095
.10.1016/j.ijheatmasstransfer.2018.07.144
30.
Seshadri
,
A.
,
Forrest
,
E. C.
, and
Shirvan
,
K.
,
2020
, “
Why Ionizing Radiation Enhances Surface Wettability
,”
Appl. Surf. Sci.
,
514
, p.
145935
.10.1016/j.apsusc.2020.145935
31.
Kano
,
S.
,
Yang
,
H.
,
McGrady
,
J.
,
Ihara
,
T.
,
Hazuku
,
T.
, and
Abe
,
H.
,
2019
, “
Wettability Recovery Behavior Governed by Desorption of Hydroxyl Species in Steel
,”
Langmuir
,
35
(
21
), pp.
6830
6837
.10.1021/acs.langmuir.9b00260
You do not currently have access to this content.