Abstract

Past nuclear accidents demonstrated that radioactive materials from an accident in a nuclear power station (NPS) can disperse to other countries or even across the globe. This means all countries need to be prepared to respond to a nuclear power emergency even if they have no nuclear power program. This study aims to propose a structured framework to enable transboundary radio activity monitoring of accidental releases in external NPSs in such a country with limited calculation resources. A trial calculation of a hypothetical release from an interfacing system loss of coolant accident (ISLOCA) in Unit 1 of Fangchenggang NPS during different representative meteorological scenarios is carried out to demonstrate the usability of the proposed framework. It was found that a relatively large release can reach the border of Thailand within 24 h when the wind along the dispersion pathway is basically in northeast direction with significant amount of rainfall, though it may not be able to trigger the alarm at the radiation monitoring stations. However, it is highly likely that the release that fulfills the aforementioned conditions be detected by one of the stations within 48 h-timeframe. As the trial calculation could deliver insightful findings with limited calculation resources, the proposed transboundary atmospheric dispersion calculation framework can be used in other nonnuclear power countries to prepare for emergency response to accidents in external NPSs.

References

1.
International Atomic Energy Agency,
2006
,
Environmental Consequences of the Chernobyl Accident and Their Remediation: Twenty Years of Experience, Report of the Chernobyl Forum Expert Group ‘Environment’
,
International Atomic Energy Agency
,
Vienna, Austria
.
2.
Michel
,
L. A.
,
Donckier
,
J.
,
Rosière
,
A.
,
Fervaille
,
C.
,
Lemaire
,
J.
, and
Bertrand
,
C.
,
2016
, “
Post-Chernobyl Incidence of Papillary Thyroid Cancer Among Belgian Children Less Than 15 Years of Age in April 1986: A 30-Year Surgical Experience
,”
Acta Chirurgica Belg.
,
116
(
2
), pp.
101
113
.10.1080/00015458.2016.1165528
3.
Park
,
K. H.
,
Kang
,
T. W.
,
Kim
,
W. J.
, and
Park
,
J. W.
,
2013
, “
134Cs and 137Cs Radioactivity in Soil and Moss Samples of Jeju Island After Fukushima Nuclear Reactor Accident
,”
Appl. Radiat. Isotopes
,
81
, pp.
379
382
.10.1016/j.apradiso.2013.03.066
4.
Lee
,
S. H.
,
Heo
,
D. H.
,
Kang
,
H. B.
,
Oh
,
P. J.
,
Lee
,
J. M.
,
Park
,
T. S.
,
Lee
,
K. B.
,
Oh
,
J. S.
, and
Suh
,
J. K.
,
2013
, “
Distribution of 131I, 134CS, 137Cs and 239,240Pu Concentrations in Korean Rainwater After the Fukushima Nuclear Power Plant Accident
,”
J. Radioanal. Nucl. Chem.
,
296
(
2
), pp.
727
731
.10.1007/s10967-012-2030-5
5.
Jha
,
S. K.
,
Gothankar
,
S. S.
,
Sartandel
,
S.
,
Pote
,
M. B.
,
Hemalatha
,
P.
,
Rajan
,
M. P.
,
Vidyasagar
,
D.
,
Indumati
,
S. P.
,
Shrivastava
,
R.
, and
Puranik
,
V. D.
,
2012
, “
Spatial Distribution of Fallout 137Cs in the Coastal Marine Environment of India
,”
J. Environ. Radioactivity
,
113
, pp.
71
76
.10.1016/j.jenvrad.2012.04.018
6.
Mietelski
,
J. W.
,
Kierepko
,
R.
,
Brudecki
,
K.
,
Janowski
,
P.
,
Kleszcz
,
K.
, and
Tomankiewicz
,
E.
,
2014
, “
Long-Range Transport of Gaseous 131I and Other Radionuclides From Fukushima Accident to Southern Poland
,”
Atmos. Environ.
,
91
, pp.
137
145
.10.1016/j.atmosenv.2014.03.065
7.
Povinec
,
P. P.
,
Gera
,
M.
,
Holý
,
K.
,
Hirose
,
K.
,
Lujaniené
,
G.
,
Nakano
,
M.
,
Plastino
,
M.
,
Sýkora
,
I.
,
Bartok
,
J.
, and
Gažák
,
M.
,
2013
, “
Dispersion of Fukushima Radionuclides in the Global Atmosphere and the Ocean
,”
Appl. Radiat. Isotopes
,
81
, pp.
383
392
.10.1016/j.apradiso.2013.03.058
8.
Marzo
,
G. A.
,
2014
, “
Atmospheric Transport and Deposition of Radionuclides Released After the Fukushima Dai-Chi Accident and Resulting Effective Dose
,”
Atmos. Environ.
,
94
, pp.
709
722
.10.1016/j.atmosenv.2014.06.009
9.
Terada
,
H.
,
Nagai
,
H.
,
Tsuduki
,
K.
,
Furuno
,
A.
,
Kadowaki
,
M.
, and
Kakefuda
,
T.
,
2020
, “
Refinement of Source Term and Atmospheric Dispersion Simulations of Radionuclides During the Fukushima Daiichi Nuclear Power Station Accident
,”
J. Environ. Radioact.
,
213
, p.
106104
.10.1016/j.jenvrad.2019.106104
10.
Sarkar
,
T.
,
Anand
,
S.
,
Singh
,
K. D.
,
Tripathi
,
R. M.
,
Sarojini
,
P. K.
,
Goto
,
D.
, and
Nakajima
,
T.
,
2017
, “
Simulating Long Range Transport of Radioactive Aerosols Using a Global Aerosol Transport Model
,”
Aerosol Air Qual. Res.
,
17
(
10
), pp.
2631
2642
.10.4209/aaqr.2017.01.0049
11.
Kim
,
S.
,
Park
,
K.
, and
Yang
,
B. M.
,
2017
, “
Validating the Applicability of MACCS2 on the Assessment of Radionuclide Deposition Over the Ocean in Fukushima Daiichi Nuclear Power Plant Accident Case
,”
J. Coastal Res.
,
79
(
S79
), pp.
55
59
.10.2112/SI79-012.1
12.
Zhang
,
X.
,
Efthimiou
,
G.
,
Wang
,
Y.
, and
Huang
,
M.
,
2018
, “
Comparisons Between a New Point Kernel-Based Scheme and the Infinite Plane Source Assumption Method for Radiation Calculation of Deposited Airborne Radionuclides From Nuclear Power Plants
,”
J. Environ. Radioactivity
,
184–185
, pp.
32
45
.10.1016/j.jenvrad.2018.01.002
13.
Leung
,
W. H.
,
Ma
,
W. M.
, and
Chan
,
P. K. Y.
,
2018
, “
Nuclear Accident Consequence Assessment in Hong Kong Using JRODOS
,”
J. Environ. Radioactivity
,
183
, pp.
27
36
.10.1016/j.jenvrad.2017.12.002
14.
Raja Shekhar
,
S. S.
,
Venkata Srinivas
,
C.
,
Rakesh
,
P. T.
,
Venkatesan
,
R.
, and
Venkatraman
,
B.
,
2020
, “
Radiological Consequence Assessments Using Time-Varying Source Terms in ONERS—Decision Support System for Nuclear Emergency Response
,”
Prog. Nucl. Energy
,
127
, p.
103436
.10.1016/j.pnucene.2020.103436
15.
Musauddin
,
A.
, and
Kim
,
J.
,
2020
, “
Transboundary Radiological Effects of a Hypothetical Nuclear Accident in Northeast Asia
,”
Radiat. Prot. Dosimetry
,
188
(
4
), pp.
470
476
.10.1093/rpd/ncz306
16.
Mohammed Saeed
,
I. M.
,
Saleh
,
M. A. M.
,
Hashim
,
S.
,
Hama
,
Y. M. S.
,
Hamza
,
K.
, and
Al-Shatri
,
S. H.
,
2020
, “
The Radiological Assessment, Hazard Evaluation, and Spatial Distribution for a Hypothetical Nuclear Power Plant Accident at Baiji Potential site
,”
Environ. Sci. Europe
,
32
(
1
), p.
6
.10.1186/s12302-020-0288-8
17.
Kovalets
,
I.
, and
Romanenko
,
O.
,
2021
, “
Use of Nuclear Emergency Response System for Assessment of Transboundary Transfer and Radiological Risks of the Potential Accidental Releases at Khmelnitsky NPP
,”
Adv. Intell. Syst. Comput.
,
1265
, pp.
3
12
.10.1007/978-3-030-58124-4_1
18.
Bertoldo
,
N. A.
,
Hunter
,
S. L.
,
Fertig
,
R. A.
,
Laguna
,
G. W.
, and
MacQueen
,
D. H.
,
2005
, “
Development of a Real-Time Radiological Area Monitoring Network for Emergency Response at Lawrence Livermore National Laboratory
,”
IEEE Sens. J.
,
5
(
4
), pp.
565
572
.10.1109/JSEN.2005.845514
19.
Duffa
,
C.
,
Bailly Du Bois
,
P.
,
Caillaud
,
M.
,
Charmasson
,
S.
,
Couvez
,
C.
,
Didier
,
D.
,
Dumas
,
F.
,
Fievet
,
B.
,
Morillon
,
M.
,
Renaud
,
P.
, and
Thébault
,
H.
,
2016
, “
Development of Emergency Response Tools for Accidental Radiological Contamination of French Coastal Areas
,”
J. Environ. Radioact.
,
151
, pp.
487
494
.10.1016/j.jenvrad.2015.04.019
20.
Baeza
,
A.
,
Corbacho
,
J. A.
,
Caballero
,
J. M.
,
Ontalba
,
M. A.
,
Vasco
,
J.
, and
Valencia
,
D.
,
2017
, “
Development of an Advanced Radioactive Airborne Particle Monitoring System for Use in Early Warning Networks
,”
J. Radiol. Prot.
,
37
(
3
), pp.
642
658
.10.1088/1361-6498/aa758c
21.
Silva
,
K.
, and
Okamoto
,
K.
,
2016
, “
A Simple Assessment Scheme for Severe Accident Consequences Using Release Parameters
,”
Nuclear Eng. Des.
,
305
, pp.
688
696
.10.1016/j.nucengdes.2016.06.035
22.
Silva
,
K.
, and
Vechgama
,
W.
,
2018
, “
R&D Activities to Be Conducted by TSO in Embarking Countries: R&D to Support Understanding of Severe Accident and Planning of Emergency Response
,”
Proceedings of the International Conference on Challenges Faced by Technical and Scientific Support Organizations (TSOs) in Enhancing Nuclear Safety and Security: Ensuring Effective and Sustainable Expertise, Brussels
, Oct. 15–18, Paper No. IAEA-CN-226/07.
23.
Nguelem
,
E. J. M.
,
Ndontchueng
,
M. M.
,
Motapon
,
O.
,
Guembou
,
C. J. S.
, and
Darko
,
E. O.
,
2017
, “
Radiological Monitoring and Statistical Approach of Primordial and Anthropogenic Radionuclides in Surface Soil of Mami-Water Site in the Western Cameroon
,”
Environ. Earth Sci.
,
76
(
17
), p.
612
.10.1007/s12665-017-6951-8
24.
Leelőssy
,
Á.
,
Lagzi
,
I.
,
Kovács
,
A.
, and
Mészáros
,
R.
,
2018
, “
A Review of Numerical Models to Predict the Atmospheric Dispersion of Radionuclides
,”
J. Environ. Radioact.
,
182
, pp.
20
33
.10.1016/j.jenvrad.2017.11.009
25.
Homann
,
S. G.
, and
Aluzzi
,
F.
,
2014
,
HotSpot Health Physics Codes Version 3.0: User's Guide
,
Lawrence Livermore National Laboratory
, Livermore,
CA
, Standard No. LLNL-SM-636474.
26.
Perianez
,
R.
,
Thiessen
,
K. M.
,
Chouhan
,
S. L.
,
Mancini
,
F.
,
Navarro
,
E.
,
Sdouz
,
G.
, and
Trifunovic
,
D.
,
2016
, “
Mid-Range Atmospheric Dispersion Modelling: Intercomparison of Simple Models in EMRAS-2 Project
,”
J. Environ. Radioact.
,
162–163
, pp.
225
234
.10.1016/j.jenvrad.2016.05.027
27.
Silva
,
K.
,
Krisanungkura
,
P.
,
Khunsrimek
,
N.
, and
Rassame
,
S.
,
2019
, “
Enhancing Radiation Monitoring System in Preparation for Transboundary Atmospheric Dispersion From a Nuclear Power Plant Accident
,”
Proceeding of the Asian Symposium on Risk Assessment and Management,
Gyeongju, South Korea, Sept. 30–Oct. 2, Paper No. 190028.
28.
Inthacha
,
S.
,
2011
, “
The Climatology of Thailand and Future Climate Change Projections Using the Regional Climate Model PRECIS
,” Ph.D. thesis,
University of East Anglia
, Norwich, UK.
29.
Hanson
,
A. L.
,
Davis
,
R. E.
, and
Mubayi
,
V.
,
1994
,
Calculations in Support of a Potential Definition of Large Release
,
Brookhaven National Laboratory
,
Upton, NY
, Report No. NUREG/CR-6094.
30.
Office of Nuclear Regulatory Research, 2013,
State-of-the-Art Reactor Consequence Analyses Project, Volume 2: Surry Integrated Analysis
,
U.S. Nuclear Regulatory Commission
,
Washington, DC
, Report No. NUREG/CR-7110.
31.
Ievdin
,
I.
,
Trybushnyi
,
D.
,
Staudt
,
C.
, and
Landman
,
C.
,
2018
,
JRodos User Guide, Version 3.4
,
Karlsruhe Institute of Technology
,
Karlsruhe, Germany
.
32.
Iman
,
R. L.
,
2008
, “
Latin Hypercube Sampling
,”
Encyclopedia of Quantitative Risk Analysis and Assessment
,
Wiley
,
Hoboken, NJ
.
You do not currently have access to this content.