Abstract

Use of flexible and dispatchable generation from the small modular reactors (SMRs) in combination with the nondispatchable generation from renewable energy systems (RES) can be an effective alternative to pursue the mandate of replacing the fossil-fuel based electricity with the carbon-neutral energy systems in the remote microcommunities. This paper evaluates the feasibility of SMRs' flexible operations in microcommunities with the photovoltaic (PV) generation as a case study. Considering the design limits of SMRs for (a) the range of net change in electrical power output and (b) the ramp rates of net change in turbine power, a power system study is conducted to cover the three aspects of flexible operations, namely: (1) Planned load-following, (2) Unplanned load-following, and (3) Frequency regulation. A generic governor model in power system simulator for engineering (PSS/E), a power system transmission and planning software, is adapted to incorporate the operating limits of the reactor for the dynamic simulation. The multitimescale approach, combining (a) steady-state time-series power flow analysis and (b) dynamic simulations with high-resolution solar irradiation datasets, is proposed to assess the implications of SMR's design limits. The results obtained on an existing remote feeder with three sets of operating limits—namely, the conventional, advanced and extreme limits of ramp rates juxtapose the SMRs' performance, given the challenging operating conditions with PV generation in remote locations. The results indicate that the SMR under study can accommodate the highest permissible PV penetration obtained by the hosting capacity analysis of the feeder under the clear sky conditions. However, dynamic simulations with the extreme PV variabilities show that the PV penetration level should be further limited so that the maximum deviations in SMR power levels stay within 40% of its rated capacity. SMR provides adequate frequency support for the PV penetration of up to 50% of the feeder maximum demand in this study.

References

1.
International Atomic Energy Agency (IAEA),
2018
,
Advances in Small Modular Reactor Technology Developments—2018 Edition
,
IAEA
,
Vienna, Austria
, p.
258
.
2.
Ingersoll
,
D. T.
,
Colbert
,
C.
,
Houghton
,
Z.
,
Snuggerud
,
R.
,
Gaston
,
J. W.
, and
Empey
,
M.
,
2015
, “
Can Nuclear Power and Renewables Be Friends?
,”
Proceedings of ICAPP
, Nice, France, May, pp.
1
9
.
3.
Underwood
,
C. P.
,
Ramachandran
,
J.
,
Giddings
,
R. D.
, and
Alwan
,
Z.
,
2007
, “
Renewable-Energy Clusters for Remote Communities
,”
Appl. Energy
,
84
(
6
), pp.
579
598
.10.1016/j.apenergy.2007.01.017
4.
Joshi
,
K.
, and
Gokaraju
,
R.
,
2018
, “
An Iterative Approach to Improve PV Hosting Capacity for a Remote Community
,”
IEEE Power & Energy Society General Meeting
, Portland, OR, Aug. 5–10, pp.
1
5
.10.1109/PESGM.2018.8586196
5.
Arriaga
,
M.
,
Canizares
,
C. A.
, and
Kazerani
,
M.
,
2016
, “
Long-Term Renewable Energy Planning Model for Remote Communities
,”
IEEE Trans. Sustain. Energy
,
7
(
1
), pp.
221
231
.10.1109/TSTE.2015.2483489
6.
Arriaga
,
M.
,
Canizares
,
C. A.
, and
Kazerani
,
M.
,
2013
, “
Renewable Energy Alternatives for Remote Communities in Northern Ontario, Canada
,”
IEEE Trans. Sustain. Energy
,
4
(
3
), pp.
661
670
.10.1109/TSTE.2012.2234154
7.
Glaser
,
A.
,
Ramana
,
M. V.
,
Ahmad
,
A.
, and
Socolow
,
R.
,
2015
,
Small Modular Reactors: A Window on Nuclear Energy- An Energy Technology Distillate
,
Andlinger Center for Energy and the Environment at Princeton University
,
Princeton, NJ
, p.
28
.
8.
Ruth
,
M. F.
,
Zinaman
,
O. R.
,
Antkowiak
,
M.
,
Boardman
,
R. D.
,
Cherry
,
R. S.
, and
Bazilian
,
M. D.
,
2014
, “
Nuclear-Renewable Hybrid Energy Systems: Opportunities, Interconnections, and Needs
,”
Energy Convers. Magan.
,
78
, pp.
684
694
.10.1016/j.enconman.2013.11.030
9.
Garcia
,
H. E.
,
Chen
,
J.
,
Kim
,
J. S.
,
Vilim
,
R. B.
,
Binder
,
W. R.
,
Sitton
,
S. M. B.
,
Boardman
,
R. D.
,
McKellar
,
M. G.
, and
Paredis
,
C. J.
,
2016
, “
Dynamic Performance Analysis of Two Regional Nuclear Hybrid Energy Systems
,”
Energy
,
107
, pp.
234
258
.10.1016/j.energy.2016.03.128
10.
Ruth
,
M.
,
Cutler
,
D.
,
Flores-Espino
,
F.
,
Stark
,
G.
,
Jenkin
,
T.
,
Simpkins
,
T.
, and
Mack-Nick
,
J.
,
2016
,
The Economic Potential of Two Nuclear-Renewable Hybrid Energy Systems
,
National Renewable Energy Laboratory
,
Golden, CO
, p.
275
, Report No. NREL/TP-6A50-66073.
11.
Jenkins
,
J. D.
,
Zhou
,
Z.
,
Ponciroli
,
R.
,
Vilim
,
R.
,
Ganda
,
F.
,
de Sisternes
,
F.
, and
Botterud
,
A.
,
2018
, “
The Benefits of Nuclear Flexibility in Power System Operations With Renewable Energy
,”
Appl. Energy
,
222
, pp.
872
884
.10.1016/j.apenergy.2018.03.002
12.
Islam
,
M. R.
, and
Gabbar
,
H. A.
,
2015
, “
Study of Small Modular Reactors in Modern Microgrids
,”
Int. Trans. Electr. Energy Syst.
,
25
(
9
), pp.
1943
1951
.10.1002/etep.1945
13.
Ichikawa
,
T.
, and
Inoue
,
T.
,
1988
, “
Light Water Reactor Plant Modeling for Power System Dynamics Simulation
,”
IEEE Trans. Power Syst.
,
3
(
2
), pp.
463
471
.10.1109/59.192897
14.
Inoue
,
T.
,
Ichikawa
,
T.
,
Kundur
,
P.
, and
Hirsch
,
P.
,
1995
, “
Nuclear Plant Models for Medium- to Long-Term Power System Stability Studies
,”
IEEE Trans. Power Syst.
,
10
(
1
), pp.
141
148
.10.1109/59.373936
15.
Arda
,
S. E.
, and
Holbert
,
K. E.
,
2015
, “
A Dynamic Model of a Passively Cooled Small Modular Reactor for Controller Design Purposes
,”
Nucl. Eng. Des.
,
289
, pp.
218
230
.10.1016/j.nucengdes.2015.04.026
16.
Chou
,
Q. B.
,
Kundur
,
P.
,
Acchione
,
P. N.
, and
Lautsch
,
B.
,
1989
, “
Improving Nuclear Generating Station Response for Electrical Grid Islanding
,”
IEEE Trans. Energy Convers.
,
4
(
3
), pp.
406
413
.10.1109/60.43243
17.
Younkins
,
T. D.
,
Winkelman
,
J. R.
,
Sanchez-Gasca
,
J. J.
, and
McGrady
,
J. A.
,
1987
, “
Output Feedback Multivariable Control for an Advanced Boiling Water Reactor
,”
IEEE Trans. Energy Convers.
,
EC-2
(
3
), pp.
349
354
.10.1109/TEC.1987.4765858
18.
Poudel
,
B.
,
Joshi
,
K.
, and
Gokaraju
,
R.
,
2018
, “
An Approach to Assess Reliability of Offsite Power as a Site Selection Criteria for a Nuclear Power Plant
,”
38th Annual Conference of the Canadian Nuclear Society
, Saskatoon, SK, Canada, June 3–6, pp.
1
6
.
19.
Poudel
,
B.
,
Joshi
,
K.
, and
Gokaraju
,
R.
,
2020
, “
A Dynamic Model of Small Modular Reactor Based Nuclear Plant for Power System Studies
,”
IEEE Trans. Energy Convers.
,
35
(
2
), pp.
977
985
.10.1109/TEC.2019.2956707
20.
Joshi
,
K.
,
Poudel
,
B.
, and
Gokaraju
,
R.
,
2020
, “
Exploring Synergy Among New Generation Technologies: Small Modular Rector, Energy Storage and Distributed Generation—A Strong Case for Remote Communities
,” ASME
J. Nucl. Eng. Radiat. Sci.
,
6
(
2
), p.
021801
.10.1115/1.4045122
21.
International Atomic Energy Agency
,
2013
, “
NuScale Power Modular and Scalable Reactor
,” Vienna, Austria, p. 12,
Report
.https://aris.iaea.org/PDF/NuScale.pdf
22.
Nuclear Energy Agency
,
2011
, “
Technical and Economic Aspects of Load Following With Nuclear Power Plants
,” Nuclear Development, Paris, France, p.
53
.
23.
International Atomic Energy Agency
,
2018
, “
Non-Baseload Operation in Nuclear Power Plants: Load Following and Frequency Control Modes of Flexible Operation
,” Vienna, Austria, p. 190, Report No. NP-T-3.23.
24.
Feutry
,
S.
,
2013
, “
Load Following and Frequency Control Transients—EDF Experience and Practice
,”
IAEA Technical Meeting on Flexible Operation Approaches of NPPs
, Paris, France, Sept. 4–6, p.
23
.
25.
CanmetENERGY Laboratory
,
2018
, “
High-Resolution Solar Radiation Datasets | Natural Resources Canada
,” Varennes Research Centre of CanmetENERGY Laboratory, Varennes, QC, Canada, accessed Apr. 2019, https://www.nrcan.gc.ca/energy/renewable-electricity/solar-photovoltaic/18409
26.
Bose
,
D.
,
Banerjee
,
S.
,
Kumar
,
M.
,
Marathe
,
P. P.
,
Mukhopadhyay
,
S.
, and
Gupta
,
A.
,
2017
, “
An Interval Approach to Nonlinear Controller Design for Load-Following Operation of a Small Modular Pressurized Water Reactor
,”
IEEE Trans. Nucl. Sci.
,
64
(
9
), pp.
2474
2488
.10.1109/TNS.2017.2728187
27.
International Atomic Energy Agency,
2017
,
Integral Pressurized Water Reactor Simulator Manual
,
IAEA
,
Vienna, Austria
, p.
120
.
28.
IEEE Power & Energy Society
,
2013
, “
Dynamic Models for Turbine-Governors in Power System Studies
,” IEEE Power & Energy Society, New York, Report No. PES-TR1, p.
117
.
29.
Siemens Power Technologies International
,
2015
, “
PSS ® E 34 Model Library
,” Schenectady, NY.
30.
Siemens Power Technologies International
,
2015
, “
PSS ® E 34 Program Operation Manual
,” Schenectady, NY.
31.
Canada Standards Association
,
2015
, “
Preferred Voltage Levels for AC Systems, 0 to 50 000 V - CAN3-C235-83 (R2015), CSA
,” Canada Standards Association (CSA) America, Inc., Toronto, ON, Canada, p.
11
.
You do not currently have access to this content.