Abstract

To meet future energy demand, while producing safe, reliable, and carbon-free energy, nuclear reactors will be needed. To make next-generation reactors more economically competitive, the Artificial Intelligence and Machine Learning-based operation optimization module of the dynamic operation and maintenance optimization (DyOMO) framework is proposed. The operation optimization module of DyOMO consists of a data-driven digital twin coupled to a genetic algorithm (GA) optimizer to quickly and efficiently search the solution space for optimal control schemes. The digital twin consists of a Bayesian Network (BN) known as MVCBayes to incorporate uncertainty in the optimization and feedforward neural networks (FFNN) as MVCNet with GA to conduct the optimization. Over time as reactor systems are operating, component degradation will cause the system's electrical output to decrease or be shutdown entirely to perform maintenance. To prevent this, the DyOMO operation optimization module aims to prolong system operation until the next scheduled maintenance period using multiple variable control (MVC) that simultaneously perturbs all actuators to better control the reactor. Comparing this approach with traditional single variable control (SVC), MVC can extend reactor operation past 5% degradation while SVC begins to struggle once the pump and turbine degradation surpasses 0.85% for load-following (LF) operation. Given this extra operation time, the system can continue to run while maximizing its safety margin until the next scheduled shutdown and potentially decrease the total number of maintenance actions throughout the license period to decrease operational and maintenance (O&M) costs.

References

1.
Yadav
,
V.
, and
Biersdorf
,
J. M.
,
2019
, “
Utilizing Flex Equipment for O&M Cost Reduction in Nuclear Power Plants
,”
Idaho National Laboratory (INL)
,
Idaho Falls, ID
, Report No.
INL/EXT-19-55445-Rev000.
2.
Xin
,
H.
,
Gan
,
D.
,
Li
,
N.
,
Li
,
H.
, and
Dai
,
C.
,
2013
, “
Virtual Power Plant‐Based Distributed Control Strategy for Multiple Distributed Generators
,”
IET Control Theory Appl.
,
7
(
1
), pp.
90
98
.10.1049/iet-cta.2012.0141
3.
Åarzén
,
K. E.
,
1999
, “
A Simple Event-Based PID Controller
,”
IFAC Proc. Vol.
,
32
(
2
), pp.
8687
8692
.10.1016/S1474-6670(17)57482-0
4.
Mousakazemi
,
S. M.
,
Ayoobian
,
N.
, and
Ansarifar
,
G. R.
,
2018
, “
Control of the Reactor Core Power in PWR Using Optimized PID Controller With the Real-Coded GA
,”
Ann. Nucl. Energy
,
118
, pp.
107
121
.10.1016/j.anucene.2018.03.038
5.
Zeng
,
W.
,
Jiang
,
Q.
,
Liu
,
Y.
,
Yan
,
S.
,
Zhang
,
G.
,
Yu
,
T.
, and
Xie
,
J.
,
2021
, “
Core Power Control of a Space Nuclear Reactor Based on a Nonlinear Model and Fuzzy-Pid Controller
,”
Prog. Nucl. Energy
,
132
, p.
103564
.10.1016/j.pnucene.2020.103564
6.
Zarei
,
M.
,
Ghaderi
,
R.
,
Kojuri
,
N.
, and
Minuchehr
,
A.
,
2017
, “
Robust PID Control of Power in Lead Cooled Fast Reactors: A Direct Synthesis Framework
,”
Ann. Nucl. Energy
,
102
, pp.
200
209
.10.1016/j.anucene.2016.12.017
7.
Brits
,
Y.
,
Botha
,
F.
,
van Antwerpen
,
H.
, and
Chi
,
H.
,
2018
, “
A Control Approach Investigation of the Xe-100 Plant to Perform Load-Following Within the Operational Range of 100–25–100%
,”
Nucl. Eng. Des.
,
329
, pp.
12
19
.10.1016/j.nucengdes.2017.11.041
8.
Yu
,
D. L.
, and
Gomm
,
J. B.
,
2003
, “
Implementation of Neural Network Predictive Control to a Multivariable Chemical Reactor
,”
Control Eng. Pract.
,
11
(
11
), pp.
1315
1323
.10.1016/S0967-0661(02)00258-7
9.
Liu
,
X.
,
Guan
,
P.
, and
Chan
,
C. W.
,
2010
, “
Nonlinear Multivariable Power Plant Coordinate Control by Constrained Predictive Scheme
,”
IEEE Trans. Control Syst. Technol.
,
18
(
5
), pp.
1116
1125
.10.1109/TCST.2009.2034640
10.
Mohamed
,
O.
,
Wang
,
J.
,
Al-Duri
,
B.
,
Lu
,
J.
,
Gao
,
Q.
, and
Xue
,
Y.
,
2012
, “
Study of a Multivariable Coordinate Control for a Supercritical Power Plant Process
,”
Int. J. Energy Eng.
,
2
(
5
), pp.
210
217
.10.5923/j.ijee.20120205.04
11.
Varuttamaseni
,
A.
,
2011
, “
Bayesian Network Representing System Dynamics in Risk Analysis of Nuclear Systems
,” Doctoral Dissertation,
University of Michigan
,
Michigan
.
12.
Lewis
,
A. D.
, and
Katrina
,
M. G.
,
2020
, “
A Dynamic Bayesian Network Structure for Joint Diagnostics and Prognostics of Complex Engineering Systems
,”
Algorithms
,
13
(
3
), p.
64
.10.3390/a13030064
13.
Hu
,
R.
,
Zou
,
L.
, and
Hu
,
G.
,
2019
, “
SAM User's Guide
,”
Argonne National Laboratory
,
Lemont, IL
, Report No.
ANL/NSE-19/18.
14.
Singh
,
V.
,
Wheeler
,
A. M.
,
Upadhyaya
,
B. R.
,
Chvala
,
O.
, and
Greenwood
,
M. S.
,
2020
, “
Plant-Level Dynamic Modeling of a Commercial-Scale Molten Salt Reactor System
,”
Nucl. Eng. Des.
,
360
, p.
110457
.10.1016/j.nucengdes.2019.110457
15.
Rivas
,
A.
,
2024
, “
Development of the Dynamic Operation and Maintenance Optimization (DyOMO) Framework
,” Dissertation,
North Carolina State University
,
Raleigh, NC
.
16.
Ooi
,
Z. J.
,
Zou
,
L.
,
Hua
,
T.
,
Fang
,
J.
, and
Hu
,
R.
,
2022
, “
Modeling of a Generic Pebble Bed High-Temperature Gas-Cooled Reactor (PB-HTGR) With SAM
,” Argonne National Laboratory, Chicago, IL, Report No.
ANL/NSE-22/59
.https://publications.anl.gov/anlpubs/2022/09/177957.pdf
17.
Svozil
,
D.
,
Kvasnicka
,
V.
, and
Pospichal
,
J.
,
1997
, “
Introduction to Multi-Layer Feed-Forward Neural Networks
,”
Chemom. Intell. Lab. Syst.
,
39
(
1
), pp.
43
62
.10.1016/S0169-7439(97)00061-0
18.
Amari
,
S.
,
1993
, “
Backpropagation and Stochastic Gradient Descent Method
,”
Neurocomputing
,
5
(
4–5
), pp.
185
196
.10.1016/0925-2312(93)90006-O
19.
Rumelhart
,
D. E.
,
Hinton
,
G. E.
, and
Williams
,
R. J.
,
1986
, “
Learning Representations by Back-Propagating Errors
,”
Nature
,
323
(
6088
), pp.
533
536
.10.1038/323533a0
20.
Steam Turbine standard IEC45-1:
1991
, Document Center Inc., Oakland, CA.
21.
Zwebek
,
A. I.
, and
Pilidis
,
P.
,
2004
, “Degradation Effects on Combined Cycle Power Plant Performance: Part III — Gas and Steam Turbine Degradation Effects,”
ASME J. Eng. Gas Turbines Power
, 126(2), pp. 306–315.10.1115/1.1639007
22.
Pla
,
P.
,
Reventos
,
F.
,
Ramos
,
M. M.
,
Sol
,
I.
, and
Strucic
,
M.
,
2016
, “
Simulation of Steam Generator Plugging Tubes in a PWR to Analyze the Operating Impact
,”
Nucl. Eng. Des.
,
305
, pp.
132
145
.10.1016/j.nucengdes.2016.05.002
23.
Eaton
,
A.
,
Alessandro
,
F. D.
,
Ahmed
,
W.
, and
Hassan
,
M.
,
2018
, “
On the Performance Degradation of Centrifugal Pumps
,”
Proceedings of the 5th International Conference of Fluid Flow, Heat and Mass Transfer
, Niagara Falls, Canada, June 7–9,Paper No. 158, pp.
1
6
.10.11159/ffhmt18.158
24.
Katoch
,
S.
,
Chauhan
,
S. S.
, and
Kumar
,
V.
,
2021
, “
A Review on Genetic Algorithm: Past, Present, and Future
,”
Multimedia Tools Appl.
,
80
(
5
), pp.
8091
8126
.10.1007/s11042-020-10139-6
25.
Hodson
,
T. O.
,
2022
, “
Root Mean Square Error (RMSE) or Mean Absolute Error (MAE): When to Use Them or Not
,”
Geosci. Model Dev.
, 15, pp.
5481
5487
.10.5194/gmd-15-5481-2022
26.
Bayes Fusion
LLC
,
2020
, Pittsburgh, PA, accessed Oct. 17, 2024, www.bayesfusion.com
27.
Najjar
,
Y. S.
,
Alalul
,
O. F.
, and
Abu-Shamleh
,
A.
,
2020
, “
Steam Turbine Bottoming Cycle Deterioration Under Different Load Conditions
,”
Therm. Sci. Eng. Prog.
,
20
, p.
100733
.10.1016/j.tsep.2020.100733
28.
Costa
,
G. D.
,
Genta
,
G.
,
Barbato
,
G.
,
De Chiffre
,
L.
, and
Hansen
,
H. N.
,
2017
, “
Accuracy Assessment of an Industrial Actuator
,”
Proc. CIRP
,
62
, pp.
417
422
.10.1016/j.procir.2016.06.119
29.
Fracassi
,
A.
,
De Donno
,
R.
,
Ghidoni
,
A.
, and
Congedo
,
P. M.
,
2022
, “
Shape Optimization and Uncertainty Assessment of a Centrifugal Pump
,”
Eng. Optim.
,
54
(
2
), pp.
200
217
.10.1080/0305215X.2020.1858075
30.
Parus
,
R.
,
2018
, “Quantifying Measurement Uncertainties of MIT Research Reactor's New Digital Nuclear Safety System,”
Dissertation
,
Massachusetts Institute of Technology
, Cambridge, MA.https://dspace.mit.edu/bitstream/handle/1721.1/119042/1059517172-MIT.pdf?sequence=1&isAllowed=y
31.
Email from Siemens, Siemens, Munich, Germany.
32.
Dias
,
R. P.
,
Filho
,
J. G.
, and
Lucca
,
Y. F.
,
2013
, “
Water Flow Meter Measurement Uncertainties
,”
WIT Trans. Ecol. Environ.
,
171
, pp.
313
322
.10.2495/WRM130281
33.
Steiner
,
R.
,
Farrell
,
M.
,
Edwards
,
S.
,
Nelson
,
T.
,
Ford
,
J.
, and
Sarwat
,
S.
,
2019
, “
A NIST Testbed for Examining the Accuracy of Smart Meters Under High Harmonic Waveform Loads
,” NIST Interagency/Internal Report (NISTIR), National Institute of Standards and Technology, Gaithersburg, MD, Report No.
8248
.10.6028/NIST.IR.8248
34.
Yan
,
M.
,
Xie
,
L.
,
Muhammad
,
I.
,
Yang
,
X.
, and
Liu
,
Y.
,
2022
, “
An Effective Method for Remaining Useful Life Estimation of Bearings With Elbow Point Detection and Adaptive Regression Models
,”
ISA Trans.
,
128
, pp.
290
300
.10.1016/j.isatra.2021.10.031
35.
Rivas
,
A.
,
Delipei
,
G. K.
,
Davis
,
I.
,
Bhongale
,
S.
,
Yang
,
J.
, and
Hou
,
J.
,
2024
, “
A Component Diagnostic and Prognostic Framework for Pump Bearings Based on Deep Learning With Data Augmentation
,”
Reliab. Eng. Syst. Saf.
,
247
, p.
110121
.10.1016/j.ress.2024.110121
You do not currently have access to this content.