Abstract

Canadian Nuclear Laboratories (CNL) is collaborating in the Joint European Canadian Chinese Development of Small Modular Reactor Technology (ECC-SMART) project to understand the corrosion behavior of the most promising candidate materials for a future supercritical water-cooled – small modular reactor (SCW-SMR). To support this aim and the project's requirements, the present study develops a costing method for assessing the impact of corrosion in a power generation cost model. This cost model builds on a methodological study of various corrosion engineering economics topics in nuclear power generation, such as the expected fuel cladding corrosion phenomena in a supercritical water-cooled reactor (SCWR) concept and estimating the main corrosion costs categories. This understanding is incorporated in a power generation cost model that applies the revenue requirements approach to life cycle costing (LCC). The LCC includes the main corrosion cost categories and a reliability factor used in assessing power generation costs, the costing of chemical species for controlling corrosion, and the present worth of revenue requirements. The method and model, therefore, provide a framework for understanding the kind of information available and needed for taking economical preventative corrosion measures for the current generation of water-cooled reactors and advanced reactors, such as the SCWR.

References

1.
Speller
,
F. N.
,
1951
,
Corrosion, Causes and Prevention
,
McGraw-Hill
,
New York/London
.
2.
Staehle
,
R. W.
,
2010
, “
Anatomy of Proactivity
,”
Corros. Rev.
,
28
(
5–6
), pp.
197
325
.10.1515/CORRREV.2010.28.5-6.197
3.
Khumsa-Ang
,
K.
,
Edwards
,
M.
, and
Rousseau
,
S.
,
2020
, “
General Corrosion of Chromium-Coated Zirconium- and Titanium-Based Alloys in Supercritical Water at 500 °C
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
6
(
3
), p.
031102
.10.1115/1.4045387
4.
Khumsa-Ang
,
K.
,
Rousseau
,
S.
, and
Shiman
,
O.
,
2022
, “
Weight Gain and Hydrogen Absorption in Supercritical Water at 500 °C of Chromium-Coated Zirconium-Based Alloys: Transverse Versus Longitudinal Direction
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
8
(
3
), p.
031102
.10.1115/1.4052520
5.
Khumsa-Ang
,
K.
,
Mendoza
,
A.
,
Nava-Dominguez
,
A.
,
Azih
,
C.
, and
Zahlan
,
H.
,
2023
, “
Initial Multidisciplinary Study of Oxidized Chromium-Coated Zirconium Alloy for Fuel Cladding of SCW-SMR Concept: Weight-Gain and Thermal Conductivity Measurements and Coating Cost Evaluation
,”
Coatings
,
13
(
9
), p.
1648
.10.3390/coatings13091648
6.
Guzonas
,
D.
,
Penttilä
,
S.
,
Cook
,
W.
,
Zheng
,
W.
,
Novotny
,
R.
,
Sáez-Maderuelo
,
A.
, and
Kaneda
,
J.
,
2016
, “
The Reproducibility of Corrosion Testing in Supercritical Water—Results of an International Interlaboratory Comparison Exercise
,”
Corros. Sci.
,
106
, pp.
147
156
.10.1016/j.corsci.2016.01.034
7.
Guzonas
,
D.
,
Novotny
,
R.
,
Penttilä
,
S.
,
Toivonen
,
A.
, and
Zheng
,
W.
,
2018
,
Materials and Water Chemistry for Supercritical Water-Cooled Reactors
,
Woodhead Publishing (Elsevier)
,
Duxford, UK/Cambridge, MA
.
8.
Cox
,
B.
,
1973
,
Accelerated Oxidation of Zircaloy-2 in Supercritical Steam
,
Atomic Energy of Canada Limited
,
Chalk River, Ontario
, Report No. AECL-4448.
9.
Guzonas
,
D.
,
2013
, “
Materials Requirements for the Canadian SCWR Concept
,”
IAEA TM on Materials and Chemistry for SCWRs CNNC NPIC
, Chengdu, China, July 22–26.
10.
European Commission
,
2020
,
Joint European Canadian Chinese Development of Small Modular Reactor Technology
,
European Union
.
11.
ECC Smart and European Nuclear Education Network (ENEN),
2022
, “
ECC-Smart,
” accessed Aug. 30, https://ecc-smart.eu/about/
12.
Woodward
,
D. G.
,
1997
, “
Life Cycle Costing—Theory, Information Acquisition and Application
,”
Int. J. Project Manage.
,
15
(
6
), pp.
335
344
.10.1016/S0263-7863(96)00089-0
13.
Pourbaix
,
M.
,
1973
,
Lectures on Electrochemical Corrosion
,
Plenum Press
,
New York/London
.
14.
Roberge
,
P. R.
,
2000
,
Handbook of Corrosion Engineering
,
McGraw-Hill
,
New York
.
15.
Roberge
,
P. R.
,
2006
,
Corrosion Basics: An Introduction
,
NACE International
,
Houston, TX
.
16.
Shreir
,
L. L.
,
2010
, “
Basic Concepts of Corrosion
,”
Shreir's Corrosion
,
Elsevier
,
Amsterdam, The Netherlands
, pp.
89
100
.
17.
Speller
,
F. N.
,
1926
,
Corrosion, Causes and Prevention
,
McGraw-Hill
,
New York
.
18.
LeSurf
,
J. E.
,
1973
, “
Introduction
,”
Symposium on Corrosion Control by Design in CANDU Nuclear Power Reactors
,
J. T. N.
Atkinson
, and
J. E.
LeSurf
, eds.,
Atomic Energy of Canada Limited
,
Chalk River, ON, Canada
, p.
1
.
19.
Cornell
,
R. M.
, and
Schwertmann
,
U.
,
2006
,
The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses
,
Wiley-VCH
,
Weinheim, Germany
.
20.
Faivre
,
D.
, ed.,
2016
,
Iron Oxides: From Nature to Applications
,
Wiley-VCH
,
Weinheim, Germany
.
21.
Atkinson
,
J. T. N.
, and
LeSurf
,
J. E.
, eds.,
1973
,
Proceedings of the Symposium on Corrosion Control by Design in CANDU Nuclear Power Reactors
, Held at Power Projects on Oct. 18, 1972,
Atomic Energy of Canada Limited
,
Chalk River, ON
, Canada, Report No. AECL-4429.
22.
Fontana
,
M. G.
, and
Greene
,
N.
,
1978
,
Corrosion Engineering
,
McGraw-Hill
,
New York
.
23.
Guzonas
,
D.
,
Tremaine
,
P.
, and
Jay-Gerin
,
J.-P.
,
2009
, “
Chemistry Control Challenges in a Supercritical Water-Cooled Reactor
,”
Power Plant Chem.
,
11
(
5
), pp.
284
291
.
24.
Guzonas
,
D.
,
Novotny
,
R.
, and
Penttilä
,
S.
,
2017
, “
Corrosion Phenomena Induced by Supercritical Water in Generation IV Nuclear Reactors
,”
Structural Materials for Generation IV Nuclear Reactors
,
P.
Yvon
, ed.,
Elsevier
,
Duxford, UK
, pp.
105
152
.
25.
Guzonas
,
D.
,
2014
, “
Extreme Water Chemistry-How Gen IV Water Chemistry Research Improves Gen III Water-Cooled Reactors
,”
19th Pacific Basin Nuclear Conference (PBNC 2014)
, Vancouver, BC, Canada, Aug. 24–28,
Canadian Nuclear Society
,
Toronto, ON, Canada
.
26.
Guzonas
,
D.
,
Edwards
,
M.
, and
Zheng
,
W.
,
2016
, “
Assessment of Candidate Fuel Cladding Alloys for the Canadian Supercritical Water-Cooled Reactor Concept
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
2
(
1
), p.
011016
.10.1115/1.4031502
27.
Teysseyre
,
S.
,
2012
, “
Corrosion Issues in Supercritical Water Reactor (SCWR) Systems
,”
Nuclear Corrosion Science and Engineering
,
D.
Féron
, ed.,
Elsevier
,
Cambridge, UK
, pp.
866
905
.
28.
Novotny
,
R.
, and
Guzonas
,
D.
,
2020
, “
Material Research for the Supercritical Water-Cooled Reactor—Summary and Open Issues
,”
Nuclear Corrosion
,
S.
Ritter
, ed.,
Elsevier
,
Duxford, UK
, pp.
403
435
.
29.
Allen
,
T. R.
,
Chen
,
Y.
,
Ren
,
X.
,
Sridharan
,
K.
,
Tan
,
L.
,
Was
,
G. S.
,
West
,
E.
, and
Guzonas
,
D.
,
2020
, “
Material Performance in Supercritical Water
,”
Comprehensive Nuclear Materials
,
Elsevier
,
Amsterdam, The Netherlands
, pp.
292
338
.
30.
Guzonas
,
D.
, and
Novotny
,
R.
,
2013
,
Supercritical Water-Cooled Reactor Materials – Summary of Research and Open Issues
,
Atomic Energy of Canada Limited
,
Chalk River, ON
, Canada, Report No. CW-127120-CONF-010.
31.
Guzonas
,
D.
,
Wills
,
J.
,
Dole
,
H.
,
Michel
,
J.
,
Jang
,
S.
,
Haycock
,
M.
, and
Chutumstid
,
M.
,
2010
,
Steel Corrosion in Supercritical Water: An Assessment of the Key Parameters
,
Atomic Energy of Canada Limited
,
Chalk River, ON, Canada
, Report No. CW-127120-CONF-004.
32.
Guzonas
,
D.
, and
Cook
,
W.
,
2015
,
Chemistry Control Strategy for the Canadian SCWR Concept Generation IV Reactor Concepts
,
Atomic Energy of Canada Limited
,
Chalk River, ON
, Canada, Report No. 217-127120-REPT-001.
33.
Guzonas
,
D.
, and
Zheng
,
W.
,
2015
,
Evaluation of Fuel Cladding Materials for the Canadian SCWR Concept
,
Canadian Nuclear Laboratories
,
Chalk River, ON
, Canada, Report No. 217-127100-ASD-001.
34.
Xu
,
R.
,
Yetisir
,
M.
, and
Hamilton
,
H.
,
2014
,
Thermal-Mechanical Behaviour of Fuel Element in SCWR Design
,
Atomic Energy of Canada Limited
,
Chalk River, ON
, Canada, Paper No. AECL-CW-127000-CONF-009.
35.
Longton
,
P. B.
,
1966
,
The Oxidation of Iron- and Nickel-Based Alloys in Supercritical Steam: A Review of the Available Data
,
United Kingdom Atomic Energy Authority
, TRG Report No. 1144.
36.
Guzonas
,
D. A.
, and
Cook
,
W. G.
,
2012
, “
Cycle Chemistry and Its Effect on Materials in a Supercritical Water-Cooled Reactor: A Synthesis of Current Understanding
,”
Corros. Sci.
,
65
, pp.
48
66
.10.1016/j.corsci.2012.08.006
37.
Guzonas
,
D. G.
,
2013
,
The Physical Chemistry of Corrosion in a Supercritical Water-Cooled Reactor
,
Atomic Energy of Canada Limited
,
Chalk River, ON
, Canada, Paper No. AECL-CW-127120-CONF-009.
38.
Edwards
,
M.
,
Rousseau
,
S.
,
Novotný
,
R.
,
Gong
,
B.
,
Fulger
,
M.
,
Penttilä
,
S.
,
Toivonen
,
A.
,
Sàez-Maderuelo
,
A.
,
Zhang
,
L.
,
Guzonas
,
D.
, and
Huang
,
X.
,
2022
, “
The Reproducibility of Corrosion Testing in Supercritical Water—Results of a Second International Interlaboratory Comparison Exercise
,”
J. Nucl. Mater.
,
565
, p.
153759
.10.1016/j.jnucmat.2022.153759
39.
Svishchev
,
I. M.
,
Carvajal-Ortiz
,
R. A.
,
Choudhry
,
K. I.
, and
Guzonas
,
D. A.
,
2013
, “
Corrosion Behavior of Stainless Steel 316 in Sub- and Supercritical Aqueous Environments: Effect of LiOH Additions
,”
Corros. Sci.
,
72
, pp.
20
25
.10.1016/j.corsci.2013.02.005
40.
Steeves
,
G.
, and
Cook
,
W.
,
2017
, “
Development of Kinetic Models for the Long-Term Corrosion Behavior of Candidate Alloys for the Canadian SCWR
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
3
(
3
), p.
031001
.10.1115/1.4035549
41.
Pencer
,
J.
,
Edwards
,
M. K.
,
Guzonas
,
D.
,
Edwards
,
G. W. R.
, and
Hyland
,
B.
,
2011
,
Impact of Corrosion Product Deposition on CANDU-SCWR Lattice Physics
,
Atomic Energy of Canada Limited
,
Chalk River, ON
, Canada, Paper No. AECL-CW-123700-CONF-014.
42.
Guzonas
,
D.
, and
Qiu
,
L.
,
2013
,
Activity Transport in a Supercritical Water-Cooled Reactor
,
Atomic Energy of Canada Limited
,
Chalk River, ON
, Canada, Paper No. AECL-CW-127130-CONF-004.
43.
Lister
,
D.
, and
Uchida
,
S.
,
2015
, “
Determining Water Chemistry Conditions in Nuclear Reactor Coolants
,”
J. Nucl. Sci. Technol.
,
52
(
4
), pp.
451
466
.10.1080/00223131.2014.973460
44.
Barber
,
D.
,
Dundar
,
Y.
, and
Petit
,
P. J.
,
1972
, “
Early Experience With Water Chemistry at the 250 MW(e) Gentilly Nuclear Power Station
,”
Thirty-Third Annual Meeting of the International Water Conference of the Engineers' Society of Western Pennsylvania
, Pittsburgh, PA, Oct. 24–26, pp.
143
150
.
45.
Guzonas
,
D.
,
Brosseau
,
F.
,
Tremaine
,
P.
,
Meesungnoen
,
J.
, and
Jay-Gerin
,
J.-P.
,
2012
, “
Water Chemistry in a Supercritical Water-Cooled Pressure Tube Reactor
,”
Nucl. Technol.
,
179
(
2
), pp.
205
219
.10.13182/NT12-A14093
46.
Kritsky
,
V. G.
,
1999
,
Water Chemistry and Corrosion of Nuclear Power Plant Structural Materials
,
American Nuclear Society, La Grange Park
,
IL
.
47.
Burrill
,
K. A.
,
2000
, “
Water Chemistries and Corrosion Product Transport in Supercritical Water in Reactor Heat Transport Systems
,”
Proceedings of the 8th British Nuclear Energy Society Conference on Water Chemistry of Nuclear Reactor Systems
, Bournemouth, UK, Oct. 22–26, pp.
357
363
.
48.
LeSurf
,
J. E.
, and
Taylor
,
G. F.
,
1972
, “
Material Selection and Corrosion Control Methods for CANDU Nuclear Power Reactors
,” Report No. AECL-4057.
49.
LeSurf
,
L. E.
,
Bryant
,
P. E. C.
, and
Tanner
,
M. G.
,
1967
, “
Use of Ammonia to Supress Oxygen Production and Corrosion in Boiling-Water Reactors
,”
Corrosion
,
23
(
3
), pp.
57
64
.10.5006/0010-9312-23.3.57
50.
LeSurf
,
J. E.
, and
Allison
,
G. M.
,
1976
, “
Ammonia Suppresses Oxygen Production in Boiling Water Reactors
,”
Nucl. Technol.
,
29
(
2
), pp.
160
165
.10.13182/NT76-A31575
51.
Aniski
,
Y. N.
, and
Khitrov
,
Y. A.
,
1992
, “
Technical-Economic Assessment of Low Cobalt Content in Structural Materials
,”
Coolant Technology of Water Cooled Reactors, International Atomic Energy Agency
,
Vienna, Austria
, pp.
151
154
.
52.
Khitrov
,
Y. A.
,
1992
, “
Super-Pure Steels for Nuclear Power
,”
Coolant Technology of Water Cooled Reactors
,
International Atomic Energy Agency
,
Vienna, Austria
, p.
155
.
53.
Jenks
,
G. H.
, and
Griess
,
J. C.
,
1967
,
Water Chemistry in Pressurized and Boiling Water Power Reactors
,
Oak Ridge National Laboratory (ORNL)
,
Oak Ridge, TN
, Report No. ORNL-4173.
54.
Petit
,
P. J.
,
1973
, “
Chemistry Control and Purification
,”
Proceedings of the Symposium on Corrosion Control by Design in CANDU Nuclear Power Reactors
,
J. T. N.
Atkinson
and
J. E.
LeSurf
, eds.,
Atomic Energy of Canada Limited
,
Chalk River, ON
, Power Projects, Oct. 18, pp.
41
43
.
55.
Gordon
,
B. M.
,
2006
, “
Introduction to Corrosion in the Nuclear Power Industry
,”
Corrosion: Environments and Industries
,
S. D.
Cramer
, and
B. S.
Covino
, eds.,
ASM International
, pp.
339
340
.
56.
Ford
,
F. P.
,
Gordon
,
B. M.
, and
Horn
,
R. M.
,
2006
, “
Corrosion in Boiling Water Reactors
,”
Corrosion: Environments and Industries
,
S. D.
Cramer
and
B. S.
Covino
, eds.,
ASM International
,
Materials Park, OH
, pp.
341
361
.
57.
Wood
,
C. J.
, and
Wells
,
D. M.
,
2020
, “
Water Chemistry Control in LWRs
,”
Comprehensive Nuclear Materials
,
R. J. M.
Konings
, and
R. E.
Stoller
, eds.,
Elsevier
,
Amsterdam
, The Netherlands, pp.
33
63
.
58.
Tomlinson
,
M.
, ed.,
1975
,
Activity Transport in CANDUs
,
Atomic Energy of Canada Limited
,
Chalk River, ON
, Canada, Report No. AECL-5113.
59.
Marrone
,
P. A.
,
2013
, “
Supercritical Water Oxidation—Current Status of Full-Scale Commercial Activity for Waste Destruction
,”
J. Supercrit. Fluids
,
79
, pp.
283
288
.10.1016/j.supflu.2012.12.020
60.
Zhang
,
F.
,
Shen
,
B.
,
Su
,
C.
,
Xu
,
C.
,
Ma
,
J.
,
Xiong
,
Y.
, and
Ma
,
C.
,
2017
, “
Energy Consumption and Exergy Analyses of a Supercritical Water Oxidation System With a Transpiring Wall Reactor
,”
Energy Convers. Manage.
,
145
, pp.
82
92
.10.1016/j.enconman.2017.04.082
61.
Zhang
,
F.
,
Chen
,
J.
,
Su
,
C.
, and
Ma
,
C.
,
2018
, “
Energy Consumption and Economic Analyses of a Supercritical Water Oxidation System With Oxygen Recovery
,”
Processes
,
6
(
11
), p.
224
.10.3390/pr6110224
62.
Guzonas
,
D.
, and
Cook
,
W.
,
2015
, “
Water Chemistry Specifications for the Canadian Supercritical Water-Cooled Reactor Concept
,”
7th International Symposium on Supercritical Water-Cooled Reactors, ISSCWR-7
,
S.
Penttilä
, ed.,
VTT Technical Research Centre of Finland
,
Helsinki, Finland
, Mar. 15–18.
63.
Ganda
,
F.
,
Taiwo
,
T. A.
, and
Kim
,
T. K.
,
2018
, “
Report on the Update of Fuel Cycle Cost Algorithms
,” Report No. NTRD-FCO-2018-000439.
64.
Ganda
,
F.
,
Hoffman
,
E.
,
Taiwo
,
T. A.
,
Kim
,
T. K.
, and
Hansen
,
J.
,
2019
,
Report on the ACCERT Cost Algorithms Tool
,
Argonne National Laboratory
,
Argonne, IL
, Report No. ANL/NSE-19/10.
65.
Hansen
,
R. F.
,
Silverman
,
J.
,
Queen
,
S. P.
,
Ryan
,
R. F.
, and
Austin
,
W. E.
,
1984
,
Addition of Soluble and Insoluble Neutron Absorbers to the Reactor Coolant System of TMI-2
,
GPU Nuclear Corporation
,
Middletown, PA
, Report No. GEND-026.
66.
Pashevich
,
V. I.
,
1992
, “
USSR Experience in Decontamination and Water Chemistry of VVER Type Nuclear Reactors
,”
Coolant Technology of Water Cooled Reactors
,
International Atomic Energy Agency
,
Vienna, Austria
, pp.
155
174
.
67.
Schulenberg
,
T.
, and
Leung
,
L. K. H.
,
2023
, “
SuperCritical Water-Cooled Reactors (SCWRs
),”
Handbook of Generation IV Nuclear Reactors
,
I. L.
Pioro
, ed.,
Elsevier
,
Duxford, UK; Cambridge, MA
, pp.
259
284
.
68.
Burley
,
E. L.
,
1979
, “
Oxygen Suppression in Boiling Water Reactors
,” Quarterly Report 4, July 1–30 Sep., 1978,
U.S. Department of Energy
, Report No. DOE/ET/34203-38.
69.
Lin
,
C. C.
,
2013
,
Radiochemical Technology in Nuclear Power Plants
,
American Nuclear Society
,
La Grange Park, IL
.
70.
Hettiarachchi
,
S.
,
2019
,
Key Emerging Issues and Recent Progress Related to Plant Chemistry/Corrosion (BWR Nuclear Power Plants)
,
Advanced Nuclear Technology International
,
Tollered, Sweden
.
71.
Generation IV International Forum (GIF), 2023,
GIF 2022 Annual Report
,
GIF
,
Paris, France.
72.
Macdonald
,
D. D.
,
2016
, “
The Electrochemical Nature of Stress Corrosion Cracking
,”
Stress Corrosion Cracking of Nickel Based Alloys in Water-Cooled Nuclear Reactors
,
Elsevier
,
Duxford, UK
, pp.
239
294
.
73.
Gordon
,
B. M.
,
2013
, “
Corrosion and Corrosion Control in Light Water Reactors
,”
JOM
,
65
(
8
), pp.
1043
1056
.10.1007/s11837-013-0658-4
74.
Was
,
G. S.
, and
Allen
,
T. R.
,
2019
, “
Corrosion Issues in Current and Next-Generation Nuclear Reactors
,”
Structural Alloys for Nuclear Energy Applications
,
Elsevier
,
Amsterdam, The Netherlands
, pp.
211
246
.
75.
Was
,
G. S.
, and
Andresen
,
P. L.
,
2020
, “
Mechanisms Behind Irradiation-Assisted Stress Corrosion Cracking
,”
Nuclear Corrosion
,
Elsevier
,
Duxford, UK
, pp.
47
88
.
76.
Eason
,
E. D.
,
Brown
,
S. B.
, and
Thomas
,
J. M.
,
1981
,
Cost-Effectiveness of Countermeasures to Intergranular Stress Corrosion Cracking in BWR Piping
,
Electric Power Research Institute
,
Palo Alto, CA
, Report No. EPRI-NP-1703.
77.
Ru
,
X.
, and
Staehle
,
R. W.
,
2013
, “
Historical Experience Providing Bases for Predicting Corrosion and Stress Corrosion in Emerging Supercritical Water Nuclear Technology: Part 1—Review
,”
Corrosion
,
69
(
3
), pp.
211
229
.10.5006/0726
78.
Ru
,
X.
, and
Staehle
,
R. W.
,
2013
, “
Historical Experience Providing Bases for Predicting Corrosion and Stress Corrosion in Emerging Supercritical Water Nuclear Technology: Part 2— Review
,”
Corros.
,
69
(
4
), pp.
319
334
.10.5006/0726.part2
79.
Ru
,
X.
, and
Staehle
,
R. W.
,
2013
, “
Historical Experience Providing Bases for Predicting Corrosion and Stress Corrosion in Emerging Supercritical Water Nuclear Technology: Part 3—Review
,”
Corros.
,
69
(
5
), pp.
423
447
.10.5006/0726.part3
80.
Staehle
,
R. W.
, and
Gorman
,
J. A.
,
2003
, “
Quantitative Assessment of Submodes of Stress Corrosion Cracking on the Secondary Side of Steam Generator Tubing in Pressurized Water Reactors: Part 1
,”
Corrosion
,
59
(
11
), pp.
931
994
.10.5006/1.3277522
81.
Staehle
,
R. W.
, and
Gorman
,
J. A.
,
2004
, “
Quantitative Assessment of Submodes of Stress Corrosion Cracking on the Secondary Side of Steam Generator Tubing in Pressurized Water Reactors: Part 2
,”
Corrosion
,
60
(
1
), pp.
5
63
.10.5006/1.3299232
82.
Staehle
,
R. W.
, and
Gorman
,
J. A.
,
2004
, “
Quantitative Assessment of Submodes of Stress Corrosion Cracking on the Secondary Side of Steam Generator Tubing in Pressurized Water Reactors: Part 3
,”
Corrosion
,
60
(
2
), pp.
115
180
.10.5006/1.3287716
83.
Eason
,
E. D.
, and
Shusto
,
L. M.
,
1986
,
Analysis of Cracking in Small Diameter BWR Piping
,
Electric Power Research Institute
,
Palo Alto, CA
, Report No. EPRI NP-4394.
84.
Kritsky
,
V. G.
,
1993
, “
Influence of Water Chemistry Regimes on Fuel Cladding Failure in LWRs
,”
Fuel Failure in Normal Operation of Water Reactors: Experience, Mechanisms and Management
,
International Atomic Energy Agency
,
Vienna, Austria
, pp.
282
285
.
85.
Kritsky
,
V. G.
,
Berezina
,
I. G.
,
Kritskij
,
A. V.
, and
Stjagkin
,
P. S.
,
1999
, “
Modelling of Zirconium Alloys Corrosion in LWR
,”
Water Chemistry and Corrosion Control of Cladding and Primary Circuit Components
,
International Atomic Energy Agency
,
Vienna, Austria
, pp.
235
241
.
86.
Niehoff
,
P.
, and
Von Jan
,
R. F.
,
1974
, “,”
Nuclear Fuel Performance: Proceedings of the International Conference Organised by the British Nuclear Energy Society
,
BWR Fuel Experience
, 15–19 Oct., 1973, the Institution of Civil Engineers, 1–7 Great George Street, Westminster, London,
British Nuclear Energy Society
,
London
, pp.
74.1
74.4
.
87.
Locke
,
D. H.
,
1975
, “
Review of Experience With Water Reactor Fuels 1968–1973
,”
Nucl. Eng. Des.
,
33
(
2
), pp.
94
124
.10.1016/0029-5493(75)90017-5
88.
Penn
,
W. J.
,
Lo
,
R. K.
, and
Wood
,
J. C.
,
1977
, “
CANDU Fuel—Power Ramp Performance Criteria
,”
Nucl. Technol.
,
34
(
2
), pp.
249
268
.10.13182/NT77-A39701
89.
Kalashnikov
,
V. V.
, and
Solyanyi
,
V. I.
,
1978
, “
Materials Science Aspects of Reliability of Fuel Elements of Water-Cooled Power Reactors
,”
Sov. At. Energy
,
44
(
6
), pp.
578
585
.10.1007/BF01117859
90.
Ballinger
,
R.
,
Christensen
,
R.
,
Eilbert
,
R.
,
Oldberg
,
S.
,
Rumble
,
E.
, and
Was
,
G.
,
1982
, “
Clad Failure Modeling and Discussions
,”
Zirconium in the Nuclear Industry
,
D. G.
Franklin
, ed.,
American Society for Testing and Materials
,
Philadelphia, PA
, pp.
129
145
.
91.
Choi
,
K.-Y.
,
Chang
,
S.-H.
, and
Yoon
,
Y.-K.
,
1991
, “
A Dynamic Reliability Model for Nuclear Fuel Element
,”
Reliab. Eng. Syst. Saf.
,
31
(
1
), pp.
111
116
.10.1016/0951-8320(91)90040-E
92.
Jernkvist
,
L. O.
,
1995
, “
A Model for Predicting Pellet-Cladding Interaction-Induced Fuel Rod Failure
,”
Nucl. Eng. Des.
,
156
(
3
), pp.
393
399
.10.1016/0029-5493(94)00961-W
93.
International Atomic Energy Agency,
1998
,
Review of Fuel Failures in Water Cooled Reactors
,
International Atomic Energy Agency
,
Vienna, Austria
.
94.
International Atomic Energy Agency,
2019
,
Review of Fuel Failures in Water Cooled Reactors (2006–2015)
,
International Atomic Energy Agency
,
Vienna, Austria
.
95.
Tayal
,
M.
,
Millen
,
E.
, and
Sejnoha
,
R.
,
1992
, “
A Semi-Mechanistic Approach to Calculate the Probability of Fuel Defects
,”
Third International Conference on CANDU Fuel
,
P. G.
Boczar
, ed.,
Canadian Nuclear Society
,
Toronto
, Oct. 4–8, Chalk River, Canada, pp.
5.21
5.37
.
96.
da Silva
,
R. L.
,
1992
, “
CAFE - A Probabilistic Model for Predicting CANDU Fuel SCC Power Ramp Failures
,”
Third International Conference on CANDU Fuel
,
P. G.
Boczar
, ed., Oct. 4–8,
Canadian Nuclear Society
,
Toronto, Chalk River, Canada
, pp.
5.38
5.52
.
97.
Garzarolli
,
F.
,
von Jan
,
R.
, and
Stehle
,
H.
,
1979
, “
The Main Causes of Fuel Element Failure in Water-Cooled Power Reactors
,”
At. Energy Rev.
,
7
(
1
), pp.
31
128
.
98.
Syrett
,
B. C.
,
1992
, “
Corrosion Control in Electric Power Plants
,”
Mater. Perform.
,
31
, pp.
52
61
.
99.
Syrett
,
B. C.
,
1993
, “
Corrosion Control in Electric Power Plants—Success Stories
,”
Corros. Sci.
,
35
(
5–8
), pp.
1189
1198
.10.1016/0010-938X(93)90339-I
100.
Elms
,
A. L.
, and
Colbert
,
J. P.
,
1995
, “
Plant Perspective of Steam Flow Calorimetric Implementation
,”
EPRI Nuclear Plant Performance Improvement Seminar
,
Electric Power Research Institute
,
Albuquerque, New Mexico
, Aug. 23–24, pp.
41
62
.
101.
Lefton
,
S. A.
,
Besuner
,
P. M.
, and
Grimsrud
,
G. P.
,
1995
, “
Managing Utility Power Plant Assets to Economically Optimize Power Plant Cycling Costs, Life, and Reliability
,”
Proceedings of International Conference on Control Applications
,
IEEE
, Albany, NY, Sept. 28–29, pp.
195
208
.10.1109/CCA.1995.555681
102.
Dillon
,
C. P.
,
1965
, “
Economic Evaluation of Corrosion Control Measure
,”
Mater. Prot.
,
4
(
5
), pp.
38
45
.
103.
Watson
,
T. R. B.
,
1984
, “
Economics Evaluation of Corrosion Control
,”
Mater. Perform.
,
23
(
1
), pp.
29
33
.
104.
Verink
,
E. D.
,
2003
, “
Corrosion Economic Calculations
,”
Corrosion: Fundamentals, Testing, and Protection
,
S. D.
Cramer
, and
B. S.
Covino
, eds.,
ASM International
, Materials Park, OH, pp.
940
945
.
105.
Richardson
,
J. A.
, and
Dawson
,
J. L.
,
2010
, “
Economic Aspects of Corrosion
,”
Shreir's Corrosion
,
Elsevier
,
Amsterdam, The Netherlands
, pp.
3040
3051
.
106.
Baker
,
R. L.
,
1993
, “
Generic Steam Generator Life Cycle Management From a Utility Perspective
,”
ASME Appl. Mech. Rev.
,
46
(
5
), pp.
152
161
.10.1115/1.3120325
107.
Pomeroy
,
D. L.
, and
Waring
,
J. P.
,
1978
,
Methods for Determining the Cost of Fuel Failures in Nuclear Power Plants
,
Electric Power Research Institute
,
Palo Alto, CA,
Paper No. EPRI-NP-854.
108.
Blanks
,
H. S.
,
1992
,
Reliability in Procurement and Use: From Specification to Replacement
,
Wiley
,
Chichester, UK
.
109.
Jackman
,
P. S.
,
2003
,
Life Cycle Costing of Corrosion in the Oil and Gas Industry - A Guideline: (EFC 32)
,
Maney Publishing
,
London, UK
.
110.
Chapgaon
,
S. A.
,
2013
, “
Material Selection in Oil and Gas Environments
,”
Corrosion and Materials in the Oil and Gas Industries
,
R.
Javaherdashti
,
C.
Nwaoha
, and
H.
Tan
, eds.,
Taylor & Francis
,
Boca Raton, FL
, pp.
273
297
.
111.
Dhillon
,
B. S.
,
1989
,
Life Cycle Costing: Techniques, Models and Applications
,
Gordon and Breach Science Publishers
,
New York
.
112.
Biezma
,
M. V.
, and
San Cristóbal
,
J. R.
,
2005
, “
Methodology to Study Cost of Corrosion
,”
Corros. Eng., Sci. Technol.
,
40
(
4
), pp.
344
352
.10.1179/174327805X75821
113.
Electric Power Research Institute,
2001
,
Cost of Corrosion in the Electric Power Industry
,
Electric Power Research Institute
,
Palo Alto, CA
, p.
1004662
.
114.
Electric Power Research Institute,
2002
,
Priorities for Corrosion Research and Development for the Electric Power Industry
,
Electric Power Research Institute
,
Palo Alto, CA
, p.
1007274
.
115.
Somm
,
E.
,
Schlachter
,
W.
, and
Schwarzenbach
,
A.
,
1984
, “
Power Generating Equipment
,”
Corrosion in Power Generating Equipment
,
Plenum Press
,
New York
, pp.
3
25
.
116.
Mason
,
E. A.
,
1972
, “
Overall View of the Nuclear Fuel Cycle
,”
Education and Research in the Nuclear Fuel Cycle
,
D. M.
Elliott
, and
L. E.
Weaver
, eds.,
University of Oklahoma Press
,
Norman, OK
, pp.
3
23
.
117.
Marsh
,
W. D.
,
1980
,
Economics of Electric Utility Power Generation
,
Oxford University Press
,
New York
.
118.
Li
,
K. W.
, and
Priddy
,
A. P.
,
1985
,
Power Plant System Design
,
Wiley
,
New York
.
119.
Horlock
,
J. H.
,
1987
,
Cogeneration: Combined Heat and Power
,
Pergamon Press
,
Oxford, UK
.
120.
Gülen
,
S. C.
,
2011
, “
A More Accurate Way to Calculate the Cost of Electricity
,”
Power
,
155
(
6
), pp.
62
65
.
121.
Gülen
,
S. C.
, and
Mazumder
,
I.
,
2013
, “
An Expanded Cost of Electricity Model for Highly Flexible Power Plants
,”
ASME J. Eng. Gas Turbines Power
,
135
(
1
), p.
011801
.10.1115/1.4007379
122.
Rothwell
,
G.
,
2016
,
Economics of Nuclear Power
,
Routledge
,
London/New York
.
123.
Gülen
,
S. C.
,
2019
,
Gas Turbines for Electric Power Generation
,
Cambridge University Press
,
Cambridge, UK
.
124.
Stoll
,
H. G.
,
1989
,
Least-Cost Electric Utility Planning
,
Wiley
,
New York
.
125.
Osterhout
,
M. M.
,
1980
,
Decontamination and Decommissioning of Nuclear Facilities
,
Plenum Press
,
New York
.
126.
Murray
,
A. P.
,
1986
, “
A Chemical Decontamination Process for Decontaminating and Decommissioning Nuclear Reactors
,”
Nucl. Technol.
,
74
(
3
), pp.
324
332
.10.13182/NT86-A33835
127.
Office of the Federal Register, National Archives and Records Administration
,
2023
, “
18 CFR 101 Uniform System of Accounts Prescribed for Public Utilities and Licensees Subject to the Provisions of the Federal Power Act
,”
Office of the Federal Register, National Archives and Records Administration
, accessed Feb. 9, 2024, https://www.govinfo.gov/app/details/CFR-2023-title18-vol1/CFR-2023-title18-vol1-part101
128.
Knight
,
U. G.
,
1972
,
Power Systems Engineering and Mathematics
,
Pergamon Press
,
Oxford, UK
.
129.
Sullivan
,
R. L.
,
1977
,
Power System Planning
,
McGraw-Hill
,
New York
.
130.
Vardi
,
J.
, and
Avi-Itzhak
,
B.
,
1981
,
Electric Energy Generation: Economics, Reliability, and Rates
,
MIT Press
,
Cambridge, MA
.
131.
Billinton
,
R.
, and
Allan
,
R. N.
,
1996
,
Reliability Evaluation of Power Systems
,
Springer
,
New York
.
132.
Todreas
,
N. E.
, and
Kazimi
,
M. S.
,
2021
,
Nuclear Systems Volume I
,
CRC Press
,
Boca Raton, FL
.
133.
Hassanien
,
S.
, and
Rouse
,
S.
,
1997
, “
Thermal Efficiency Improvements: An Imperative for Nuclear Generating Stations
,”
Fourth International Conference on CANDU
, Toronto, ON, Canada, Nov. 16–18,
Canadian Nuclear Society, Toronto
, ON, Canada, pp.
89
95
.
134.
Noel
,
R.
,
1989
, “
PWR Life Evaluation Project of EdF
,”
Nucl. Eng. Des.
,
113
(
3
), pp.
337
342
.10.1016/0029-5493(89)90026-5
135.
Misra
,
K. B.
,
1992
, “
Reliability Data Analysis and Management
,”
Reliability Analysis and Prediction
,
Elsevier
,
Amsterdam
, pp.
171
246
.
136.
Pursel
,
C. A.
,
1961
, “
USAEC Nuclear Superheat Programme
,”
Small and Medium Power Reactors
,
International Atomic Energy Agency
,
Vienna
, pp.
83
110
.
137.
Birolini
,
A.
,
2017
,
Reliability Engineering
,
Springer
,
Berlin Heidelberg, Berlin, Heidelberg
.
138.
Olander
,
D. R.
, and
Motta
,
A. T.
,
2021
, “
Waterside Corrosion of Zirconium Alloy Cladding
,”
Light Water Reactor Materials: Volume II Applications
,
American Nuclear Society
,
La Grange Park, IL
, pp.
991
1046
.
139.
Ashby
,
M. F.
,
2011
,
Materials Selection in Mechanical Design
,
Elsevier
,
Amsterdam, The Netherlands
.
140.
Keynes
,
J. M.
,
1978
,
A Treatise on Probability
,
Cambridge University Press
,
Cambridge, UK
.
141.
Stuhlbarg
,
D.
,
1970
, “
Calculating the Calculated Risk
,”
Modern Cost-Engineering Techniques
,
McGraw-Hill
,
New York
, pp.
401
403
.
142.
Elliott
,
R.
,
1951
,
Economic Factors in the Selection of Steam Temperatures in Nuclear Power Plants
,
Atomic Energy Research Department
, Report No. HAA-SR-145.
143.
OECD Nuclear Energy Agency
,
1995
,
Methods of Projecting Operations and Maintenance Costs for Nuclear Power Plants
,
Nuclear Energy Agency, Organisation for Economic Co-Operation and Development
,
Paris, France
.
144.
Lundholm
,
M.
,
2013
,
Cost Analysis of Lead Cooled Fast Reactors and the ELECTRA Project
,
Royal Institute of Technology
,
Stockholm, Sweden
.
145.
Bowers
,
H. I.
,
Fuller
,
L. C.
, and
Myers
,
M. L.
,
1987
,
Cost Estimating Relationships for Nuclear Power Plant Operation and Maintenance
,
Oak Ridge, TN
, Report No. ORNL/TM-10563.
146.
Myers
,
M. L.
,
Fuller
,
L. C.
, and
Bowers
,
H. I.
,
1982
,
Nonfuel Operation and Maintenance Costs for Large Steam-Electric Power Plants-1982
,
Oak Ridge National Laboratory
, Report No. ORNL ORNL/TM-8324.
147.
Carelli
,
M. D.
,
Garrone
,
P.
,
Locatelli
,
G.
,
Mancini
,
M.
,
Mycoff
,
C.
,
Trucco
,
P.
, and
Ricotti
,
M. E.
,
2010
, “
Economic Features of Integral, Modular, Small-to-Medium Size Reactors
,”
Prog. Nucl. Energy
,
52
(
4
), pp.
403
414
.10.1016/j.pnucene.2009.09.003
148.
International Atomic Energy Agency (IAEA)
,
2013
,
Approaches for Assessing the Economic Competitiveness of Small and Medium Sized Reactors
,
IAEA Nuclear Energy
,
Vienna
, Series No. NP-T-3.7.
149.
Ganda
,
F.
,
2015
,
Economic Evaluation of Promising Options
,
Argonne National Laboratory (ANL)
,
Argonne, IL (United States)
FCRD-FCO-2015-000013.
150.
Egieya
,
J. M.
,
Amidu
,
M. A.
, and
Hachaichi
,
M.
,
2023
, “
Small Modular Reactors: An Assessment of Workforce Requirements and Operating Costs
,”
Prog. Nucl. Energy
,
159
, p.
104632
.10.1016/j.pnucene.2023.104632
151.
Choppin
,
G.
,
Liljenzin
,
J.-O.
,
Rydberg
,
J.
, and
Ekberg
,
C.
,
2013
, “
Nuclear Power Reactors
,”
Radiochemistry and Nuclear Chemistry
,
Elsevier
,
Oxford
, pp.
655
684
.
152.
Frattini
,
P. L.
, and
Moser
,
T.
,
2000
,
The Ultrasonic Key to Clean Fuel
,
Nuclear Engineering International
,
London, UK
.
153.
Olsen
,
A. R.
,
1979
,
Thorium Fuel Cycle Studies: Fuel Fabrication Process and Cost Estimation
,
Oak Ridge, TN
, Report No. ORNL/TM-5961.
154.
Nordmann
,
F.
,
Stutzmann
,
A.
, and
Bretelle
,
J. L.
,
2002
, “
Overview of PWR Chemistry Options
,”
Chemistry 2002: International Conference on Water Chemistry in Nuclear Reactors Systems—Operation Optimisation and New Developments
, Avignon, France, Apr. 22–26.
155.
Nordmann
,
F.
,
2004
, “
Aspects on Chemistry in French Nuclear Power Plants
,”
14th International Conference on the Properties of Water and Steam in Kyoto
, Kyoto, Japan, Aug. 29–Sept. 3, pp.
521
530
.
156.
Nordmann
,
F.
,
2011
, “
PWR and BWR Chemistry Optimization
,”
Nuclear Engineering International
,
London, UK
, pp.
24
29
.
157.
Bengtsson
,
B.
,
Svanberg
,
P.
,
Bothin
,
U.
,
Svärd
,
G.
, and
Rocher
,
A.
,
2008
, “
Experience of Water Treatment Applications at Ringhals
,”
NPC '08 Berlin: International Conference on Water Chemistry of Nuclear Reactor Systems
, Berlin, Germany, Sept. 15–18,
VGB PowerTech
.
158.
Wilson
,
J. A.
,
Mura
,
M.
,
Garcia
,
S.
, and
Giannelli
,
J. F.
,
2008
, “
Commissioning of the First U.S. Hollow Fiber Condensate Filtration System
,”
NPC '08 Berlin: International Conference on Water Chemistry of Nuclear Reactor Systems
, Berlin, Germany, Sept. 15–18,
VGB PowerTech
.
159.
Ryan
,
L. F.
, and
Limon
,
L.
,
1970
, “
Condensate Treatment Considerations for Boiling-Water Reactor Systems
,”
Proceedings of the American Power Conference
, Chicago, IL, May 8–10, pp.
757
770
.
160.
Ryan
,
L. F.
,
1973
, “
The Impact of Powered Ion-Exchange Resins for Water Treatment on BWR Operations
,”
Proceedings of the American Power Conference
, pp.
864
874
.
161.
Simon
,
G. P.
,
1979
, “
Water Treatment in Nuclear Power Plants
,”
Ion Exchange Pollution Control
,
C.
Calmon
, and
H.
Gold
, eds.,
CRC Press
,
Boca Raton, FL
.
162.
Comley
,
G. C. W.
,
1985
, “
The Significance of Corrosion Products in Water Reactor Coolant Circuits
,”
Prog. Nucl. Energy
,
16
(
1
), pp.
41
72
.10.1016/0149-1970(85)90005-8
163.
International Atomic Energy Agency,
2002
,
Application of Ion Exchange Processes for Treatment of Radioactive Waste and Management of Spent Ion Exchangers
,
International Atomic Energy Agency
,
Vienna, Austria
.
164.
Lin
,
K. H.
,
1973
,
Use of Ion Exchange for the Treatment of Liquids in Nuclear Power Plants
,
Oak Ridge, TN
.
165.
Dobrevski
,
I. D.
,
1986
, “
Ion-Exchange Systems and Ion-Exchange Materials in Nuclear Power Plants
,”
Ion Exchange Technology in the Nuclear Fuel Cycle, International Atomic Energy Agency
,
Vienna, Austria
, pp.
131
176
.
166.
Bour
,
D. P.
,
Langston
,
D. S.
,
Lechnick
,
W.
, and
Riddle
,
J. M.
,
1979
,
Refueling Outage Water Clarity Improvement Study
,
Pittsburgh, PA
.
167.
Nott
,
B. R.
,
1983
, “
Water Chemistry and Corrosion Problems in Nuclear Power Plants
,”
Electrodialytic Decontamination of Spent Ion Exchange Resins From CANDU Primary Heat Transport Purification Circuits
,
International Atomic Energy Agency
,
Vienna
, Austria, pp.
295
311
.
168.
Rothwell
,
G.
,
2004
, “
Nuclear Power Economics
,”
Encyclopedia of Energy
,
Elsevier
,
Amsterdam, The Netherlands
, pp.
383
394
.
169.
Jeynes
,
P. H.
,
1968
,
Profitability and Economic Choice
,
Iowa State University Press
,
Ames, IA
.
170.
Nordmann
,
F.
, and
Viricel-Honorez
,
L.
,
1998
, “
EDF Approach on OD Corrosion of SG Tubes
,”
Water Chemistry '98: 1998 JAIF International Conference on Water Chemistry in Nuclear Power Plants
, Kashiwazaki, Niigata (Japan), Oct. 13–16,
Japan Atomic Industrial Forum
.
171.
Nordmann
,
F.
,
2007
, “
Efficient, Sustainable, and Economical Plant Operation
,”
Power Plant Chem.
,
9
(
1
), pp.
4
10
.
172.
Ford
,
F. P.
,
Gordon
,
B. M.
, and
Horn
,
R. M.
,
2012
, “
Intergranular Stress Corrosion Cracking (IGSCC) in Boiling Water Reactors (BWRs
),”
Nuclear Corrosion Science and Engineering
,
Elsevier
,
Cambridge, UK
, pp.
548
580
.
173.
Andresen
,
P. L.
,
2015
, “
Why Historical Material Degradation Experience Might Not Represent Future Response
,”
Corrosion
,
NACE International
,
Dallas, TX
, Mar. 15–19, pp.
1
14
.
174.
Commons
,
J. R.
,
2017
,
Legal Foundations of Capitalism
,
Routledge
,
London and New York
.
175.
Commons
,
J. R.
,
2017
,
Institutional Economics: Its Place in Political Economy
,
Routledge
,
London and New York
.
176.
Commons
,
J. R.
,
1951
,
The Economics of Collective Action
,
Macmillan Company
,
New York
.
177.
Olds
,
F. C.
,
1983
, “
Major Rotating Equipment Design Developments
,”
Power Eng.
,
87
(
2
), pp.
42
50
.
178.
Jonas
,
O.
,
1987
, “
Water Chemistry and Corrosion Control
,”
American Nuclear Society Winter Meeting
,
Los Angeles, CA
, Nov. 15, pp.
251
252
.
179.
Elder
,
G. G.
,
1993
, “
Managing Steam Generator Margin
,”
International Nuclear Congress
,
Toronto, ON, Canada
, Oct. 3–6.
180.
Dawson
,
J. L.
,
2010
, “
Corrosion Management Overview
,”
Shreir's Corrosion
,
Elsevier
,
Amsterdam, The Netherlands
, pp.
3001
3039
.
181.
Javaherdashti
,
R.
, ed.,
2022
,
Corrosion Policy Decision Making
,
Wiley
,
Hoboken, NJ
.
182.
Syrett
,
B. C.
, and
Gorman
,
J. A.
,
2003
, “
Cost of Corrosion in the Electric Power Industry - An Update
,”
Mater. Performance
,
42
(
2
), pp.
32
38
.
183.
Électricité de France
,
2022
,
Update on the Stress Corrosion Phenomenon and Adjustment of 2022 French Nuclear Output Estimate
, EdF, Report.
184.
Électricité de France,
2022
, “
Half-Year Financial Report at 30 June 2022
,” EdF Report.
You do not currently have access to this content.