Abstract

Nonlinear ultrasonics (NLU) has grown in importance over the past years. The viability of applying the newly developed NLU technique called the Sideband Peak Count-Index (SPC-I) to estimate the 28-day unconfined compressive strength (UCS) of cylindrical concrete specimens is investigated. In addition, the SPC-I technique is combined with the conventional ultrasonic pulse velocity (UPV) technique to achieve more precise UCS estimations than would be possible with a single estimation parameter. Sixteen conventional general-purpose concrete specimens are cast utilizing water-to-cement (W/C) ratios of 0.4, 0.5, 0.55, and 0.6. To ensure the reproducibility of results, experimental operations are performed utilizing consistent testing protocols and instruments. The SPC-I is determined to be a viable parameter that can be used to estimate the UCS value of concrete specimens with high accuracy. In addition, when the SPC-I is combined with the UPV, the resulting estimates become even more accurate and reliable than when utilizing only UPV values.

References

1.
Crow
,
J. M.
,
2008
, “
The Concrete Conundrum
,”
Chem. World
,
5
(
3
), pp.
62
66
.
2.
Scrivener
,
K. L.
, and
Kirkpatrick
,
R. J.
,
2008
, “
Innovation in Use and Research on Cementitious Material
,”
Cem. Concr. Res.
,
38
(
2
), pp.
128
136
.
3.
Waller
,
V.
,
D’Aloïa
,
L.
,
Cussigh
,
F.
, and
Lecrux
,
S.
,
2004
, “
Using the Maturity Method in Concrete Cracking Control at Early Ages
,”
Cem. Concr. Compos.
,
26
(
5
), pp.
589
599
.
4.
Pignat
,
C.
,
Navi
,
P.
, and
Scrivener
,
K.
,
2005
, “
Simulation of Cement Paste Microstructure Hydration, Pore Space Characterization and Permeability Determination
,”
Mater. Struct.
,
38
(
278
), pp.
459
466
.
5.
Ulm
,
F.-J.
,
Vandamme
,
M.
,
Bobko
,
C.
,
Alberto Ortega
,
J.
,
Tai
,
K.
, and
Ortiz
,
C.
,
2007
, “
Statistical Indentation Techniques for Hydrated Nanocomposites: Concrete, Bone, and Shale
,”
J. Am. Ceram. Soc.
,
90
(
9
), pp.
2677
2692
.
6.
Manzi
,
S.
,
Mazzotti
,
C.
, and
Bignozzi
,
M. C.
,
2013
, “
Short and Long-Term Behavior of Structural Concrete With Recycled Concrete Aggregate
,”
Cem. Concr. Compos.
,
37
(
1
), pp.
312
318
.
7.
Seara-Paz
,
S.
,
González-Fonteboa
,
B.
,
Martínez-Abella
,
F.
, and
González-Taboada
,
I.
,
2016
, “
Time-Dependent Behaviour of Structural Concrete Made With Recycled Coarse Aggregates. Creep and Shrinkage
,”
Constr. Build. Mater.
,
122
(
1
), pp.
95
109
.
8.
Lee
,
H. K.
,
Lee
,
K. M.
,
Kim
,
Y. H.
,
Yim
,
H.
, and
Bae
,
D. B.
,
2004
, “
Ultrasonic In-Situ Monitoring of Setting Process of High-Performance Concrete
,”
Cem. Concr. Res.
,
34
(
4
), pp.
631
640
.
9.
Lin
,
Y.
,
Lai
,
C.-P.
, and
Yen
,
T.
,
2003
, “
Prediction of Ultrasonic Pulse Velocity (UPV) in Concrete
,”
ACI Mater. J.
,
100
(
1
), pp.
21
28
.
10.
Khatib
,
N.
,
el Houssaine
,
O.
,
Bouazza
,
F.
,
Ezzaidi
,
M.
, and
Banouni
,
H.
,
2018
, “
Study of Early Age Behaviour of Mortar Pastes With Different Dosages of Alkaline Accelerator for Shotcrete: The Use of the Ultrasound Pulse Echo Method
,”
J. Signal Process.
,
8
(
2
), pp.
45
53
.
11.
Hernandez Delgadillo
,
H.
,
Kern
,
B.
,
Loendersloot
,
R.
,
Yntema
,
D.
, and
Akkerman
,
R.
,
2018
, “
A Methodology Based on Pulse-Velocity Measurements to Quantify the Chemical Degradation Levels in Thin Mortar Specimens
,”
J. Nondestr. Eval.
,
37
(
4
), p.
79
.
12.
Tian
,
Y. P.
,
Huang
,
D. C.
, and
Li
,
B.
,
2017
, “
Monitoring Early Hydration of Concrete With Ground Penetrating Radar
,”
Key Eng. Mater.
,
726
(
1
), pp.
115
119
. www.scientific.net/KEM.726.115
13.
Hong
,
S.
,
Wiggenhauser
,
H.
,
Helmerich
,
R.
,
Dong
,
B.
,
Dong
,
P.
, and
Xing
,
F.
,
2017
, “
Long-Term Monitoring of Reinforcement Corrosion in Concrete Using Ground Penetrating Radar
,”
Corros. Sci.
,
114
(
1
), pp.
123
132
.
14.
Sun
,
H.
,
Pashoutani
,
S.
, and
Zhu
,
J.
,
2018
, “
Nondestructive Evaluation of Concrete Bridge Decks With Automated Acoustic Scanning System and Ground Penetrating Radar
,”
Sensors
,
18
(
6
), p.
1955
.
15.
Wai-Lok Lai
,
W.
,
Dérobert
,
X.
, and
Annan
,
P.
,
2018
, “
A Review of Ground Penetrating Radar Application in Civil Engineering: A 30-Year Journey From Locating and Testing to Imaging and Diagnosis
,”
NDT&E Int.
,
96
(
1
), pp.
58
78
.
16.
Kim
,
W. C.
,
Jo
,
H. J.
, and
Park
,
G.
,
2015
, “
Concrete Cure Monitoring Using Piezoelectric Admittance Measurement
,”
Proceedings of the 2015 World Congress on Advances in Structural Engineering and Mechanic
,
Icheon, South Korea
.
17.
Narayanan
,
A.
, and
Subramaniam
,
K. V. L.
,
2016
, “
Early Age Monitoring of Cement Mortar Using Embedded Piezoelectric Sensors
,”
Proceedings of SPIE—The International Society for Optical Engineering
,
Las Vegas, NV
.
18.
Lim
,
Y. Y.
,
Kwong
,
K. Z.
,
Liew
,
W. Y. H.
, and
Soh
,
C. K.
,
2016
, “
Non-Destructive Concrete Strength Evaluation Using Smart Piezoelectric Transducer—A Comparative Study
,”
Smart Mater. Struct.
,
25
(
8
), p.
085021
.
19.
Talakokula
,
V.
,
Bhalla
,
S.
, and
Gupta
,
A.
,
2018
, “
Monitoring Early Hydration of Reinforced Concrete Structures Using Structural Parameters Identified by Piezo Sensors via Electromechanical Impedance Technique
,”
Mech. Syst. Signal Process.
,
99
(
1
), pp.
129
141
.
20.
Bharathi Priya
,
C.
,
Jothi Saravanan
,
T.
,
Balamonica
,
K.
,
Gopalakrishnan
,
N.
, and
Rao
,
A. R. M.
,
2018
, “
EMI Based Monitoring of Early-Age Characteristics of Concrete and Comparison of Serial/Parallel Multi-Sensing Technique
,”
Constr. Build. Mater.
,
191
(
1
), pp.
1268
1284
.
21.
Hu
,
X.
,
Shi
,
C.
,
Liu
,
X.
,
Zhang
,
J.
, and
de Schutter
,
G.
,
2019
, “
A Review on Microstructural Characterization of Cement-Based Materials by AC Impedance Spectroscopy
,”
Cem. Concr. Compos.
,
100
(
1
), pp.
1
14
.
22.
Domski
,
J.
, and
Katzer
,
J.
,
2015
, “An Example of Monitoring of Early-Age Concrete Temperatures in a Massive Concrete Slab,”
Selected Practical and Theoretical Aspects of Contemporary Mechanics
,
Częstochowa University of Technology
, pp.
94
105
.
23.
Khan
,
F.
,
Rajaram
,
S.
,
Vanniamparambil
,
P. A.
,
Bolhassani
,
M.
,
Hamid
,
A.
,
Kontsos
,
A.
, and
Bartoli
,
I.
,
2015
, “
Multi-Sensing NDT for Damage Assessment of Concrete Masonry Walls
,”
Struct. Control Health Monit.
,
22
(
3
), pp.
449
462
.
24.
Schlicke
,
D.
,
Kanavaris
,
F.
,
Lameiras
,
R.
, and
Azenha
,
M.
,
2019
, “On-Site Monitoring of Mass Concrete,”
RILEM State-of-the-Art Reports
, Vol.
27
,
Springer
, pp.
307
355
.
25.
Farnam
,
Y.
,
Geiker
,
M. R.
,
Bentz
,
D.
, and
Weiss
,
J.
,
2015
, “
Acoustic Emission Waveform Characterization of Crack Origin and Mode in Fractured and ASR Damaged Concrete
,”
Cem. Concr. Compos.
,
60
(
1
), pp.
135
145
.
26.
Dzaye
,
E.
,
de Schutter
,
G.
, and
Aggelis
,
D. G.
,
2019
,
Early Age Cracking and Serviceability in Cement-Based Materials and Structures
,
Core
, pp.
417
422
.
27.
Dzaye
,
E. D.
,
de Schutter
,
G.
, and
Aggelis
,
D. G.
,
2018
, “
Study on Mechanical Acoustic Emission Sources in Fresh Concrete
,”
Arch. Civ. Mech. Eng.
,
18
(
3
), pp.
742
754
.
28.
Banjara
,
N. K.
,
Sasmal
,
S.
, and
Srinivas
,
V.
,
2019
, “
Investigations on Acoustic Emission Parameters During Damage Progression in Shear Deficient and GFRP Strengthened Reinforced Concrete Components
,”
Measurement
,
137
(
1
), pp.
501
514
.
29.
Thirumalaiselvi
,
A.
, and
Sasmal
,
S.
,
2019
, “
Acoustic Emission Monitoring and Classification of Signals in Cement Composites During Early-Age Hydration
,”
Constr. Build. Mater.
,
196
(
1
), pp.
411
427
.
30.
Kundu
,
T.
,
2018
,
Nonlinear Ultrasonic and Vibro-Acoustical Techniques for Nondestructive Evaluation
,
Springer
.
31.
Liu
,
P.
,
Sohn
,
H.
, and
Kundu
,
T.
,
2014
, “
Fatigue Crack Localization Using Laser Nonlinear Wave Modulation Spectroscopy (LNWMS)
,”
J. Korean Soc. Nondestr. Test.
,
34
(
6
), pp.
419
427
.
32.
Eiras
,
J. N.
,
Kundu
,
T.
,
Bonilla
,
M.
, and
Payá
,
J.
,
2013
, “
Nondestructive Monitoring of Ageing of Alkali Resistant Glass Fiber Reinforced Cement (GRC)
,”
J. Nondestr. Eval.
,
32
(
3
), pp.
300
314
.
33.
Arumaikani
,
T.
,
Sasmal
,
S.
, and
Kundu
,
T.
,
2022
, “
Detection of Initiation of Corrosion Induced Damage in Concrete Structures Using Nonlinear Ultrasonic Techniques
,”
J. Acoust. Soc. Am.
,
151
(
2
), pp.
1341
1352
.
34.
Castellano
,
A.
,
Fraddosio
,
A.
,
Piccioni
,
M. D.
, and
Kundu
,
T.
,
2021
, “
Linear and Nonlinear Ultrasonic Techniques for Monitoring Stress-Induced Damages in Concrete
,”
ASME J. Nondestr. Eval. Diagn. Progn. Eng. Syst.
,
4
(
4
), p.
041001
.
35.
Basu
,
S.
,
Arumaikani
,
T.
,
Sasmal
,
S.
, and
Kundu
,
T.
,
2021
, “
Nonlinear Ultrasonics-Based Technique for Monitoring Damage Progression in Reinforced Concrete Structures
,”
Ultrasonics
,
115
(
1
), p.
106472
.
36.
Alnuaimi
,
H.
,
Amjad
,
U.
,
Russo
,
P.
,
Lopresto
,
V.
, and
Kundu
,
T.
,
2021
, “
Monitoring Damage in Composite Plates From Crack Initiation to Macro-Crack Propagation Combining Linear and Nonlinear Ultrasonic Techniques
,”
Struct. Health Monit.
,
20
(
1
), pp.
139
150
.
37.
Alnuaimi
,
H.
,
Amjad
,
U.
,
Park
,
S.
,
Russo
,
P.
,
Lopresto
,
V.
, and
Kundu
,
T.
,
2022
, “
An Improved Nonlinear Ultrasonic Technique for Detecting and Monitoring Impact Induced Damage in Composite Plates
,”
Ultrasonics
,
119
(
1
), p.
106620
.
38.
Sasmal
,
S.
,
Alnuaimi
,
H. N.
,
Amjad
,
U.
,
Nikvar-Hassani
,
A.
,
Zhang
,
L.
, and
Kundu
,
T.
,
2021
, “
Monitoring Concrete Curing by Linear and Nonlinear Ultrasonic Methods
,”
ACI Mater. J.
,
118
(
3
), p.
61
.
39.
Nikvar-Hassani
,
A.
,
Alnuaimi
,
H. N.
,
Amjad
,
U.
,
Sasmal
,
S.
,
Zhang
,
L.
, and
Kundu
,
T.
,
2021
, “
Alkali Activated Fly Ash Based Concrete: Evaluation of Curing Process Using Non-Linear Ultrasonic Approach
,”
ASME J. Nondestr. Eval. Diagn. Progn. Eng. Syst.
,
5
(
2
), pp.
1
26
.
40.
Sahu
,
S.
,
Badger
,
S.
,
Thaulow
,
N.
, and
Lee
,
R. J.
,
2004
, “
Determination of Water–Cement Ratio of Hardened Concrete by Scanning Electron Microscopy
,”
Cem. Concr. Compos.
,
26
(
8
), pp.
987
992
.
41.
Payan
,
C.
,
Garnier
,
V.
, and
Moysan
,
J.
,
2010
, “
Potential of Nonlinear Ultrasonic Indicators for Nondestructive Testing of Concrete
,”
Adv. Civ. Eng.
,
2010
(
1
), p.
238472
.
42.
Planès
,
T.
, and
Larose
,
E.
,
2013
, “
A Review of Ultrasonic Coda Wave Interferometry in Concrete
,”
Cem. Concr. Res.
,
53
(
1
), pp.
248
255
.
You do not currently have access to this content.