Abstract

When osteoporosis occurs, the long cortical bone shows increased porosity. The effect of porosity on the ultrasonic body wave and axial ultrasonic guided wave propagation in the long cortical bone has not been fully investigated. In this article, in order to evaluate the effects of partial porosity on the elastic properties and the ultrasonic wave propagation in the dry long cortical bone, the relation between the partial porosity and the effective anisotropic elastic modulus of the dry cortical bone has been established using the stiffness contribution tensor and the Maxwell homogenization scheme. The anisotropic porous long cortical bone model has been constructed, the acoustic field is analytically solved, and the effects of different levels of partial porosities on the elastic properties of long cortical bone are studied. The effects of porosity on the ultrasonic body wave propagation velocity and guided wave dispersion characteristics are carefully investigated. The results show that the elastic moduli C33d, C44d, the body waves (including longitudinal wave, SH wave (shear wave motion in a vertical plane), and SV wave (shear wave motion in a horizontal plane) propagating along the vertical direction (perpendicular to the isotropic plane of long cortical bone), longitudinal guided wave modes L1andL2 in the low-frequency plateau region are more sensitive to the canalicular porosity; However, the elastic moduli C11d, C66d, the body waves (including longitudinal wave, SH wave) propagating along the horizontal direction (along the isotropic plane of long cortical bone) are more sensitive to the Haversian porosity. Flexural guided wave modes are sensitive to both types of porosity. This article provides a theoretical basis for nondestructive evaluation of osteoporosis using ultrasonic waves.

References

1.
Lowet
,
G.
, and
Van der Perre
,
G.
,
1996
, “
Ultrasound Velocity Measurement in Long Bones: Measurement Method and Simulation of Ultrasound Wave Propagation
,”
J. Biomech.
,
29
(
10
), pp.
1255
1262
.
2.
Nicholson
,
P. H.
,
Moilanen
,
P.
,
Kärkkäinen
,
T.
,
Timonen
,
J.
, and
Cheng
,
S.
,
2002
, “
Guided Ultrasonic Waves in Long Bones: Modelling, Experiment and In Vivo Application
,”
Physiol. Meas.
,
23
(
4
), pp.
755
768
.
3.
Bossy
,
E.
,
Talmant
,
M.
,
Peyrin
,
F.
,
Akrout
,
L.
,
Cloetens
,
P.
, and
Laugier
,
P.
,
2004b
, “
An In Vitro Study of the Ultrasonic Axial Transmission Technique at the Radius: 1-MHz Velocity Measurements Are Sensitive to Both Mineralization and Intracortical Porosity
,”
J. Bone Mineral Res.
,
19
(
9
), pp.
1548
1556
.
4.
Foldes
,
A. J.
,
Rimon
,
A.
,
Keinan
,
D. D.
, and
Popovtzer
,
M. M.
,
1995
, “
Quantitative Ultrasound of the Tibia: A Novel Approach for Assessment of Bone Status
,”
Bone
,
17
(
4
), pp.
363
367
.
5.
Lefebvre
,
F.
,
Deblock
,
Y.
,
Campistron
,
P.
,
Ahite
,
D.
, and
Fabre
,
J. J.
,
2002
, “
Development of a New Ultrasonic Technique for Bone and Biomaterials In Vitro Characterization
,”
J. Biomed. Mater. Res.
,
63
(
4
), pp.
441
446
.
6.
Moilanen
,
P.
,
Nicholson
,
P. H.
,
Kilappa
,
V.
,
Cheng
,
S.
, and
Timonen
,
J.
,
2007
, “
Assessment of the Cortical Bone Thickness Using Ultrasonic Guided Waves: Modelling and In Vitro Study
,”
Ultrasound Med. Biol.
,
33
(
2
), pp.
254
262
.
7.
Kilappa
,
V.
,
Moilanen
,
P.
,
Xu
,
L.
,
Nicholson
,
P. H.
,
Timonen
,
J.
, and
Cheng
,
S.
,
2011
, “
Low-Frequency Axial Ultrasound Velocity Correlates With Bone Mineral Density and Cortical Thickness in the Radius and Tibia in Pre- and Postmenopausal Women
,”
Osteoporos Int.
,
22
(
4
), pp.
1103
1113
.
8.
Sievänen
,
H.
,
Cheng
,
S.
,
Ollikainen
,
S.
, and
Uusi-Rasi
,
K.
,
2001
, “
Ultrasound Velocity and Cortical Bone Characteristics In Vivo
,”
Osteoporos Int.
,
12
(
5
), pp.
399
405
.
9.
Lee
,
M. Y.
,
Jeyaprakash
,
N.
, and
Yang
,
C. H.
,
2022
, “
An Investigation on Osteoporosis Based on Guided Wave Propagation in Multi-layered Bone Plates
,”
J. Mech. Behav. Biomed. Mater.
,
126
, p.
105026
.
10.
Dodd
,
S. P.
,
Cunningham
,
J. L.
,
Miles
,
A. W.
,
Gheduzzi
,
S.
, and
Humphrey
,
V. F.
,
2007
, “
An In Vitro Study of Ultrasound Signal Loss Across Simple Fractures in Cortical Bone Mimics and Bovine Cortical Bone Samples
,”
Bone
,
40
(
3
), pp.
656
661
.
11.
Protopappas
,
V. C.
,
Fotiadis
,
D. I.
, and
Malizos
,
K. N.
,
2006
, “
Guided Ultrasound Wave Propagation in Intact and Healing Long Bones
,”
Ultrasound Med. Biol.
,
32
(
5
), pp.
693
708
.
12.
Xu
,
K. L.
,
Ta
,
D. A.
,
He
,
R. X.
,
Qin
,
Y. X.
, and
Wang
,
W. Q.
,
2014
, “
Axial Transmission Method for Long Bone Fracture Evaluation by Ultrasonic Guided Waves: Simulation, Phantom and In Vitro Experiments
,”
Ultrasound Med. Biol.
,
40
(
4
), pp.
817
827
.
13.
Li
,
Y.
,
Liu
,
D.
,
Xu
,
K.
,
Ta
,
D.
,
Le
,
L. H.
, and
Wang
,
W.
,
2017
, “
Transverse and Oblique Long Bone Fracture Evaluation by Low Order Ultrasonic Guided Waves: A Simulation Study
,”
Biomed. Res. Int.
,
2017
, pp.
1
10
.
14.
Moilanen
,
P.
,
Kilappa
,
V.
,
Nicholson
,
P. H.
,
Timonen
,
J.
, and
Cheng
,
S.
,
2004
, “
Thickness Sensitivity of Ultrasound Velocity in Long Bone Phantoms
,”
Ultrasound Med. Biol.
,
30
(
11
), pp.
1517
1521
.
15.
Bossy
,
E.
,
Talmant
,
M.
, and
Laugier
,
P.
,
2002
, “
Effect of Bone Cortical Thickness on Velocity Measurements Using Ultrasonic Axial Transmission: a 2D Simulation Study
,”
J. Acoust. Soc. Am.
,
112
(
1
), pp.
297
307
.
16.
Kilappa
,
V.
,
Xu
,
K.
,
Moilanen
,
P.
,
Heikkola
,
E.
,
Ta
,
D.
, and
Timonen
,
J.
,
2013
, “
Assessment of the Fundamental Flexural Guided Wave in Cortical Bone by an Ultrasonic Axial-Transmission Array Transducer
,”
Ultrasound Med. Biol.
,
39
(
7
), pp.
1223
1232
.
17.
Minonzio
,
J. G.
,
Bochud
,
N.
,
Vallet
,
Q.
,
Bala
,
Y.
,
Ramiandrisoa
,
D.
,
Follet
,
H.
,
Mitton
,
D.
, and
Laugier
,
P.
,
2018
, “
Bone Cortical Thickness and Porosity Assessment Using Ultrasound Guided Waves: An Ex Vivo Validation Study
,”
Bone
,
116
, pp.
111
119
.
18.
Moilanen
,
P.
,
2008
, “
Ultrasonic Guided Waves in Bone
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
55
(
6
), pp.
1277
1286
.
19.
Raum
,
K.
,
Leguerney
,
I.
,
Chandelier
,
F.
,
Bossy
,
E.
,
Talmant
,
M.
,
Saïed
,
A.
,
Peyrin
,
F.
, and
Laugier
,
P.
,
2005
, “
Bone Microstructure and Elastic Tissue Properties are Reflected in QUS Axial Transmission Measurements
,”
Ultrasound Med. Biol.
,
31
(
9
), pp.
1225
1235
.
20.
Ta
,
D. A.
,
Xu
,
K. L.
,
Moilanen
,
P.
,
Wang
,
W. Q.
, and
Cheng
,
S. L.
,
2009
, “
Ultrasonic Guided Wave Propagation in Long Bones With Varying Cortical Thickness
,”
2009 IEEE International Ultrasonics Symposium Proceedings
,
Rome, Itlay
,
Sept. 20–23
, pp.
1914
1917
.
21.
Song
,
X.
,
Ta
,
D.
, and
Wang
,
W.
,
2011
, “
Analysis of Superimposed Ultrasonic Guided Waves in Long Bones by the Joint Approximate Diagonalization of Eigen-Matrices Algorithm
,”
Ultrasound Med. Biol.
,
37
(
10
), pp.
1704
1713
.
22.
Muller
,
M.
,
Moilanen
,
P.
,
Bossy
,
E.
,
Nicholson
,
P.
,
Kilappa
,
V.
,
Timonen
,
J.
,
Talmant
,
M.
,
Cheng
,
S.
, and
Laugier
,
P.
,
2005
, “
Comparison of Three Ultrasonic Axial Transmission Methods for Bone Assessment
,”
Ultrasound Med. Biol.
,
31
(
5
), pp.
633
642
.
23.
Bossy
,
E.
,
Talmant
,
M.
, and
Laugier
,
P.
,
2004
, “
Three-Dimensional Simulations of Ultrasonic Axial Transmission Velocity Measurement on Cortical Bone Models
,”
J. Acoust. Soc. Am.
,
115
(
5
), pp.
2314
2324
.
24.
Nguyen
,
V. H.
, and
Naili
,
S.
,
2012
, “
Simulation of Ultrasonic Wave Propagation in Anisotropic Poroelastic Bone Plate Using Hybrid Spectral/Finite Element Method
,”
Int. J. Numer. Method. Biomed. Eng.
,
28
(
8
), pp.
861
876
.
25.
Stech
,
E. L.
, and
Byars
,
E. F.
,
1967
, “A Descriptive Model of Lamellar Bone Anisotropy,”
Biomechanics Monograph
,
E. F.
Byars
, ed.,
ASME
,
New York
.
26.
Katz
,
J. L.
,
1981
, “Composite Material Models for Cortical Bone,”
Mechanical Properties of Bone
,
S. C.
Cowin
, ed.,
ASME
,
New York
, pp.
171
184
.
27.
Sevostianov
,
I.
, and
Kachanov
,
M.
,
2000
, “
Impact of the Porous Microstructure on the Overall Elastic Properties of the Osteonal Cortical Bone
,”
J. Biomech.
,
33
(
7
), pp.
881
888
.
28.
Dong
,
X. N.
, and
Guo
,
X. E.
,
2006
, “
Prediction of Cortical Bone Elastic Constants by a Two-Level Micromechanical Model Using a Generalized Self-Consistent Method
,”
ASME J. Biomech. Eng.
,
128
(
3
), pp.
309
316
.
29.
Salguero
,
L.
,
Saadat
,
F.
, and
Sevostianov
,
I.
,
2014
, “
Micromechanical Modeling of Elastic Properties of Cortical Bone Accounting for Anisotropy of Dense Tissue
,”
J. Biomech.
,
47
(
13
), pp.
3279
3287
.
30.
Gao
,
X.
, and
Sevostianov
,
I.
,
2016
, “
Connection Between Elastic and Electrical Properties of Cortical Bone
,”
J. Biomech.
,
49
(
5
), pp.
765
772
.
31.
Zhou
,
J. G.
,
Cui
,
Z. W.
, and
Sevostianov
,
I.
,
2020
, “
Effect of Saturation on the Elastic Properties and Anisotropy of Cortical Bone
,”
Int. J. Eng. Sci.
,
155
, pp.
103362-1
103362-12
.
32.
Cowin
,
S. C.
,
Gailani
,
G.
, and
Benalla
,
M.
,
2009
, “
Hierarchical Poroelasticity: Movement of Interstitial Fluid Between Porosity Levels in Bones
,”
Philos. Trans. A Math. Phys. Eng. Sci.
,
367
(
1902
), pp.
3401
3444
.
33.
Cardoso
,
L.
, and
Cowin
,
S. C.
,
2009
, “
Anisotropic Elastic Constants of Cancellous Bone Derived From Fabric Dependent Poroelastic Theory and Ultrasound Wave Propagation
,”
Proceedings of the 4th Biot Conference on Poromechanics
,
Columbia University, New York
,
June 8–10
, pp.
157
164
.
34.
Markov
,
M.
,
Levin
,
V.
, and
Markova
,
I.
,
2016
, “
Acoustic Field Generated by an Axisymmetric Source Embedded in a Fluid-Filled Cylindrical Hole Located in a Micro-Cracked Medium
,”
Int. J. Eng. Sci.
,
98
, pp.
3
13
.
35.
Sharma
,
D.
,
Larriera
,
A. I.
,
Palacio-Mancheno
,
P. E.
,
Gatti
,
V.
,
Fritton
,
J. C.
,
Bromage
,
T. G.
,
Cardoso
,
L.
,
Doty
,
S. B.
, and
Fritton
,
S. P.
,
2018
, “
The Effects of Estrogen Deficiency on Cortical Bone Microporosity and Mineralization
,”
Bone
,
110
, pp.
1
10
.
36.
Sharma
,
D.
,
Ciani
,
C.
,
Marin
,
P. A.
,
Levy
,
J. D.
,
Doty
,
S. B.
, and
Fritton
,
S. P.
,
2012
, “
Alterations in the Osteocyte Lacunar-Canalicular Microenvironment Due to Estrogen Deficiency
,”
Bone
,
51
(
3
), pp.
488
497
.
37.
Bousson
,
V.
,
Peyrin
,
F.
,
Bergot
,
C.
,
Hausard
,
M.
,
Sautet
,
A.
, and
Laredo
,
J. D.
,
2004
, “
Cortical Bone in the Human Femoral Neck: Three-Dimensional Appearance and Porosity Using Synchrotron Radiation
,”
J. Bone Miner. Res.
,
19
(
5
), pp.
794
801
.
38.
Thomas
,
C. D.
,
Feik
,
S. A.
, and
Clement
,
J. G.
,
2005
, “
Regional Variation of Intracortical Porosity in the Midshaft of the Human Femur: Age and Sex Differences
,”
J. Anat.
,
206
(
2
), pp.
115
125
.
39.
Kingsmill
,
V. J.
,
Gray
,
C. M.
,
Moles
,
D. R.
, and
Boyde
,
A.
,
2007
, “
Cortical Vascular Canals in Human Mandible and Other Bones
,”
J. Dent. Res.
,
86
(
4
), pp.
368
372
.
40.
Schneider
,
P.
,
Stauber
,
M.
,
Voide
,
R.
,
Stampanoni
,
M.
,
Donahue
,
L. R.
, and
Müller
,
R.
,
2007
, “
Ultrastructural Properties in Cortical Bone Vary Greatly in Two Inbred Strains of Mice as Assessed by Synchrotron Light Based Micro- and Nano-CT
,”
J. Bone Miner. Res.
,
22
(
10
), pp.
1557
1570
.
41.
Hesse
,
B.
,
Langer
,
M.
,
Varga
,
P.
,
Pacureanu
,
A.
,
Dong
,
P.
,
Schrof
,
S.
,
Mannicke
,
N.
, et al
,
2014a
, “
Alterations of Mass Density and 3D Osteocyte Lacunar Properties in Bisphosphonate-Related Osteonecrotic Human Jaw Bone, a Synchrotron microCT Study
,”
PLoS One
,
9
(
2
), pp.
e88481-1
e88481-11
.
42.
Hesse
,
B.
,
Männicke
,
N.
,
Pacureanu
,
A.
,
Varga
,
P.
,
Langer
,
M.
,
Maurer
,
P.
,
Peyrin
,
F.
, and
Raum
,
K.
,
2014
, “
Accessing Osteocyte Lacunar Geometrical Properties in Human Jaw Bone on the Submicron Length Scale Using Synchrotron Radiation μCT
,”
J. Microsc.
,
255
(
3
), pp.
158
168
.
43.
Hesse
,
B.
,
Varga
,
P.
,
Langer
,
M.
,
Pacureanu
,
A.
,
Schrof
,
S.
,
Mannicke
,
N.
,
Suhonen
,
H.
, et al
,
2015
, “
Canalicular Network Morphology is the Major Determinant of the Spatial Distribution of Mass Density in Human Bone Tissue: Evidence by Means of Synchrotron Radiation Phase-Contrast Nano-CT
,”
J. Bone Miner. Res.
,
30
(
2
), pp.
346
356
.
44.
Cai
,
X. R.
,
Brenner
,
R.
,
Peralta
,
L.
,
Olivier
,
C.
,
Gouttenoire
,
P. J.
,
Chappard
,
C.
,
Peyrin
,
F.
,
Cassereau
,
D.
,
Laugier
,
P.
, and
Grimal
,
Q.
,
2019
, “
Homogenization of Cortical Bone Reveals That the Organization and Shape of Pores Marginally Affect Elasticity
,”
J. R. Soc. Interface
,
16
(
151
), p.
20180911
.
45.
Horii
,
H.
, and
Nemat-Nasser
,
S.
,
1983
, “
Overall Moduli of Solids With Microcracks: Load-Induced Anisotropy
,”
J. Mech. Phys. Solids
,
31
(
2
), pp.
155
171
.
46.
Kachanov
,
M.
,
Tsukrov
,
I.
, and
Shafiro
,
B.
,
1994
, “
Effective Moduli of Solids With Cavities of Various Shapes
,”
ASME Appl. Mech. Rev.
,
47
(
1
), pp.
S151
S174
.
47.
Sevostianov
,
I.
, and
Kachanov
,
M.
,
1999
, “
Compliance Tensors of Ellipsoidal Inclusions
,”
Int. J. Fracture
,
96
(
1
), pp.
L3
L7
.
48.
Sevostianov
,
I.
,
Yilmaz
,
N.
,
Kushch
,
V.
, and
Levin
,
V.
,
2005
, “
Effective Elastic Properties of Matrix Composites With Transversely-Isotropic Phases
,”
Int. J. Solids Struct.
,
42
(
2
), pp.
455
476
.
49.
Kunin
,
I. A.
,
1983
,
Elastic Media With Microstructure II, Three-Dimensional Models
,
Springer-Verlag
,
Berlin, Germany
.
50.
Zhou
,
J. G.
,
Cui
,
Z. W.
,
Zhang
,
B. X.
,
Kundu
,
T.
, and
Sevostianov
,
I.
,
2023
, “
The Effect of Porosity on the Elastic Properties of Cortical Bone and Ultrasound Propagation
,”
Int. J. Eng. Sci.
,
182
, p.
103772
.
51.
Saadat
,
F.
,
Sevostianov
,
I.
, and
Giraud
,
A.
,
2012
, “
Approximate Representation of a Compliance Contribution Tensor for a Cylindrical Inhomogeneity Normal to the Axis of Symmetry of a Transversely Isotropic Material
,”
Int. J. Fracture
,
174
(
2
), pp.
237
244
.
52.
Sevostianov
,
I.
, and
Sabina
,
F. J.
,
2007
, “
Cross-Property Connections for Fiber Reinforced Piezoelectric Materials With Anisotropic Constituents
,”
Int. J. Eng. Sci.
,
45
(
9
), pp.
719
735
.
53.
Sevostianov
,
I.
, and
Giraud
,
A.
,
2013
, “
Generalization of Maxwell Homogenization Scheme for Elastic Material Containing Inhomogeneities of Diverse Shape
,”
Int. J. Eng. Sci.
,
64
, pp.
23
36
.
54.
Sevostianov
,
I.
,
Mogilevskaya
,
S. G.
, and
Kushch
,
V. I.
,
2019
, “
Maxwell's Methodology of Estimating Effective Properties: Alive and Well
,”
Int. J. Eng. Sci.
,
140
, pp.
35
88
.
55.
Zhang
,
B. X.
,
Dong
,
H. F.
, and
Wang
,
K. X.
,
1994
, “
Multipole Sources in a Fluid-Filled Borehole Surrounded by a Transversely Isotropic Elastic Solid
,”
J. Acoust. Soc. Am.
,
96
(
4
), pp.
2546
2555
.
56.
Parnell
,
W. J.
,
Vu
,
M. B.
,
Grimal
,
Q.
, and
Naili
,
S.
,
2012
, “
Analytical Methods to Determine the Effective Mesoscopic and Macroscopic Elastic Properties of Cortical Bone
,”
Biomech. Model. Mechanobiol.
,
11
(
6
), pp.
883
901
.
57.
Baron
,
C.
,
Talmant
,
M.
, and
Laugier
,
P.
,
2007
, “
Effect of Porosity on Effective Diagonal Stiffness Coefficients (CII) and Elastic Anisotropy of Cortical Bone at 1 MHz: A Finite-Difference Time Domain Study
,”
J. Acoust. Soc. Am.
,
122
(
3
), pp.
1810
1817
.
58.
Hellmich
,
C.
,
Ulm
,
F. J.
, and
Dormieux
,
L.
,
2004
, “
Can the Diverse Elastic Properties of Trabecular and Cortical Bone be Attributed to Only a Few Tissue-Independent Phase Properties and Their Interactions? Arguments From a Multiscale Approach
,”
Biomech. Model. Mechanobiol.
,
2
(
4
), pp.
219
238
.
59.
Granke
,
M.
,
Grimal
,
Q.
,
Saïed
,
A.
,
Nauleau
,
P.
,
Peyrin
,
F.
, and
Laugier
,
P.
,
2011
, “
Change in Porosity is the Major Determinant of the Variation of Cortical Bone Elasticity at the Millimeter Scale in Aged Women
,”
Bone
,
49
(
5
), pp.
1020
1026
.
60.
Walpole
,
L. J.
,
1984
, “
Fourth-Rank Tensors of the Thirty-Two Crystal Classes: Multiplication Tables
,”
Proc. R. Soc. London, A. Math. Phys. Sci.
,
391
(
1800
), pp.
149
179
.
61.
Kanaun
,
S. K.
, and
Levin
,
V. M.
,
2008
,
Self-Consistent Methods for Composites
,
Springer
,
Dordrecht
.
62.
Elliott
,
H. A.
, and
Mott
,
N. F.
,
1948
, “
Three-Dimensional Stress Distributions in Hexagonal Aeolotropic Crystals
,”
Math. Proc. Cambridge
,
44
(
4
), pp.
522
533
.
You do not currently have access to this content.