Abstract

In order to address the limitations of condition monitoring of multipart coaxial structure equipment, which are caused by the difficulties in placing sensors at the vibration source due to special structures or environmental constraints and the inability to accurately identify weak faults, a fault diagnosis method based on a convolutional neural network (CNN) and a transformer neural network is proposed. First, a neural network based on a transformer encoder is constructed. The original signal is then processed by a signal preprocessing method, after which the original signal and the processed signal are fused to form the input. Finally, the rich and complementary fault features are extracted by resplicing the data shape. The sliding window is utilized to stitch the one-dimensional timing signal for the initial time and input the model. Subsequently, the data are stitched for a second time and input into the one-dimensional CNN layer and embedded layer. Subsequently, a multilayer transformer encoder is introduced to capture global information. The experimental results demonstrate that the proposed method exhibits an accuracy rate of 97.2%, accompanied by a discernible clustering effect. This approach effectively addresses the challenge of accurately extracting weak fault features from composite faults, offering a promising avenue for practical applications.

References

1.
Wei
,
Y.
,
Li
,
Y.
,
Xu
,
M.
, and
Huang
,
W. J. E.
,
2019
, “
A Review of Early Fault Diagnosis Approaches and Their Applications in Rotating Machinery
,”
Entropy
,
21
(
4
), p.
409
.
2.
Li
,
H.
,
Lv
,
H. Y.
,
Sun
,
H.
,
Qin
,
Z. Y.
,
Xiong
,
J.
,
Han
,
Q. K.
,
Liu
,
J. G.
, and
Wang
,
X. P.
,
2021
, “
Nonlinear Vibrations of Fiber-Reinforced Composite Cylindrical Shells With Bolt Loosening Boundary Conditions
,”
J. Sound Vib.
,
496
, p.
115935
.
3.
Zeng
,
X.
,
Yang
,
C.
,
Liu
,
J.
,
Zhou
,
K.
,
Li
,
D.
,
Wei
,
S.
, and
Liu
,
Y. J.
,
2016
, “
Remaining Useful Life Prediction for Rotating Machinery Based on Dynamic Graph and Spatial–Temporal Network
,”
Measur. Sci. Technol.
,
34
(
3
), p.
035102
.
4.
Hou
,
M.
, and
Shi
,
H.
,
2021
, “
Stator-Winding Incipient Shorted-Turn Fault Detection for Motor System in Motorized Spindle Using Modified Interval Observers
,”
IEEE Trans. Instrum. Meas.
,
70
, pp.
1
16
.
5.
Liu
,
R. N.
,
Yang
,
B. Y.
,
Zio
,
E.
, and
Chen
,
X. F.
,
2018
, “
Artificial Intelligence for Fault Diagnosis of Rotating Machinery: A Review
,”
Mech. Syst. Signal Process.
,
108
, pp.
33
47
.
6.
Wang
,
R.
,
Ding
,
X. X.
,
He
,
D.
,
Li
,
Q. C.
,
Li
,
X.
,
Tang
,
J.
, and
Huang
,
W. B.
,
2023
, “
Shift-Invariant Sparse Filtering for Bearing Weak Fault Signal Denoising
,”
IEEE Sens. J.
,
23
(
21
), pp.
26096
26106
.
7.
Li
,
J. M.
,
Peng
,
J. L.
,
Zhang
,
S.
,
Zhang
,
J. F.
, and
Meng
,
Z.
,
2024
, “
Weak Fault Feature Extraction of Rolling Bearing Based on Multi-System Coupled Cascaded Stochastic Resonance System
,”
Meas. Sci. Technol.
,
35
(
3
), p.
035108
.
8.
Wang
,
X. Y.
, and
Ma
,
J.
,
2021
, “
Weak Fault Feature Extraction of Rolling Bearing Based on SVMD and Improved MOMEDA
,”
Math. Probl. Eng.
,
2021
, pp.
1
11
.
9.
Lu
,
Z.
,
Yan
,
X.
,
Wang
,
Z.
,
Zhang
,
Y.
,
Sun
,
J.
, and
Ma
,
C.
,
2024
, “
Compound Fault Diagnosis of Rolling Bearings Based on AVMD and IMOMEDA
,”
Meas. Sci. Technol.
,
35
(
6
), p.
066124
.
10.
Gu
,
X.
,
Yang
,
S.
,
Liu
,
Y.
,
Liu
,
Z.
, and
Hao
,
R.
,
2022
, “
Weak Fault Feature Extraction of Rolling Element Bearings Based on Ensemble Tunable Q-Factor Wavelet Transform and Non-Dominated Negentropy
,”
Meas. Sci. Technol.
,
33
(
6
), p.
065015
.
11.
Lv
,
X.
,
Zhou
,
F. X.
,
Li
,
B.
, and
Yan
,
B. K.
,
2023
, “
Incipient Fault Feature Extraction of Rolling Bearing Based on Signal Reconstruction
,”
Electronics
,
12
(
18
), p.
3749
.
12.
Zhang
,
K.
,
Deng
,
Y.
,
Chen
,
P.
,
Ma
,
C.
, and
Xu
,
Y.
,
2022
, “
Quaternion Empirical Wavelet Transform and Its Applications in Rolling Bearing Fault Diagnosis
,”
Measurement
,
195
, p.
111179
.
13.
Xu
,
J.
,
Li
,
K.
,
Fan
,
Y.
, and
Yuan
,
X.
,
2023
, “
A Label Information Vector Generative Zero-Shot Model for the Diagnosis of Compound Faults
,”
Expert Syst. Appl.
,
233
, p.
120875
.
14.
Xu
,
J.
,
Zhou
,
L.
,
Zhao
,
W. H.
,
Fan
,
Y. Q.
,
Ding
,
X.
, and
Yuan
,
X. H.
,
2022
, “
Zero-Shot Learning for Compound Fault Diagnosis of Bearings
,”
Expert Syst. Appl.
,
190
, p.
116197
.
15.
Huang
,
R.
,
Li
,
J.
,
Li
,
W.
, and
Cui
,
L.
,
2020
, “
Deep Ensemble Capsule Network for Intelligent Compound Fault Diagnosis Using Multisensory Data
,”
IEEE Trans. Instrum. Meas.
,
69
(
5
), pp.
2304
2314
.
16.
Wen
,
L.
,
Li
,
X. Y.
,
Gao
,
L.
, and
Zhang
,
Y. Y.
,
2018
, “
A New Convolutional Neural Network-Based Data-Driven Fault Diagnosis Method
,”
IEEE Trans. Ind. Electron.
,
65
(
7
), pp.
5990
5998
.
17.
Zhang
,
K.
,
Wang
,
J. Y.
,
Shi
,
H. T.
,
Zhang
,
X. C.
, and
Tang
,
Y. H.
,
2021
, “
A Fault Diagnosis Method Based on Improved Convolutional Neural Network for Bearings Under Variable Working Conditions
,”
Measurement
,
182
, p.
109749
.
18.
Papanastasiou
,
G.
,
Dikaios
,
N.
,
Huang
,
J.
,
Wang
,
C.
,
Yang
,
G.
, and
Informatics
,
H.
,
2023
, “
Is Attention All You Need in Medical Image Analysis? A Review
,”
IEEE J. Biomed. Health Inform.
,
28
(
3
), pp.
1398
1411
.
19.
Vaswani
,
A.
,
Shazeer
,
N.
,
Parmar
,
N.
,
Uszkoreit
,
J.
,
Jones
,
L.
,
Gomez
,
A. N.
,
Kaiser
,
Ł
, and
Polosukhin
,
I.
,
2017
, “
Attention Is All You Need
,”
Adv. Neural Inf. Process. Syst.
, arxiv-1706.03762.
20.
Han
,
S. Z.
,
Sun
,
S. K.
,
Zhao
,
Z. S.
,
Luan
,
Z. Q.
, and
Niu
,
P. J.
,
2024
, “
Deep Residual Multiscale Convolutional Neural Network With Attention Mechanism for Bearing Fault Diagnosis Under Strong Noise Environment
,”
IEEE Sens. J.
,
24
(
6
), pp.
9073
9081
.
21.
Li
,
J.
,
Bao
,
Y.
,
Liu
,
W. X.
,
Ji
,
P. X.
,
Wang
,
L. K.
, and
Wang
,
Z.
,
2023
, “
Twins Transformer: Cross-Attention Based Two-Branch Transformer Network for Rotating Bearing Fault Diagnosis
,”
Measurement
,
223
, p.
113687
.
22.
Hou
,
Y.
,
Wang
,
J.
,
Chen
,
Z.
,
Ma
,
J.
, and
Li
,
T.
,
2023
, “
Diagnosisformer: An Efficient Rolling Bearing Fault Diagnosis Method Based on Improved Transformer
,”
Eng. Appl. Artif. Intell.
,
124
, p.
106507
.
23.
Yang
,
Z. H.
,
Cen
,
J.
,
Liu
,
X.
,
Xiong
,
J. N.
, and
Chen
,
H. H.
,
2022
, “
Research on Bearing Fault Diagnosis Method Based on Transformer Neural Network
,”
Meas. Sci. Technol.
,
33
(
8
), p.
085111
.
24.
Zhang
,
X.
,
Xie
,
H.
,
Zhou
,
Y.
, and
Jia
,
L.
,
2024
, “
Local Feature Expansion Vision Transformer Model for Bearing Fault Diagnosis Under Noise Environments
,”
J. Instrum.
,
19
(
3
), p.
P03018
.
25.
Zhou
,
Z.
,
Ai
,
Q.
,
Lou
,
P.
,
Hu
,
J.
, and
Yan
,
J.
,
2024
, “
A Novel Method for Rolling Bearing Fault Diagnosis Based on Gramian Angular Field and CNN-ViT
,”
Sensors
,
24
(
12
), p.
3967
.
You do not currently have access to this content.