Abstract

The use of Fabric-Reinforced Cementitious Matrix (FRCM) composites has become a cornerstone in strengthening several types of structures, ranging from reinforced concrete structures to historical masonry constructions. It is crucial to experimentally assess the effectiveness of the application of the reinforcing layer. Indeed, the performance of FRCM reinforcing interventions highly depends on the bonding at the matrix–fiber and matrix–substrate interfaces. Therefore, the experimental characterization of FRCM bond behavior is essential for designing and ensuring the durability of reinforcement systems. To address this, we have proposed using an innovative nonlinear ultrasonic method: the Side-band Peak Count (SPC) technique. Specifically, the SPC approach has been applied to analyze ultrasonic test results obtained during Double-Lap Shear Tests (DLT) conducted on masonry specimens reinforced with B-FRCM (basalt fiber textile FRCM). We show that it is possible to correlate nonlinear ultrasonic parameters with the shear stress distribution at the reinforcement–masonry interface. Additionally, a relatively new nonlinear ultrasonic parameter, the SPC index, is shown to be effective in monitoring the evolution of the shear stress–slip relationship at this interface, a crucial aspect for understanding the mechanics of the reinforcement–substrate interaction. The nonlinear ultrasonic results have been compared with the results of DLT debonding tests to validate the proposed methodology. The effectiveness of the SPC technique is investigated and discussed. Finally, we have developed a robust numerical model to analyze the bond behavior between the reinforcement and masonry. The numerical model is valuable for both the design of experimental tests and the validation of the experimental results.

References

1.
Marra
,
A.
,
Rainieri
,
C.
, and
Fabbrocino
,
G.
,
2022
, “On the Role of Historical Research in the Structural Condition Assessment of Heritage Structures,”
Handbook of Cultural Heritage Analysis
,
S.
D'Amico
and
V.
Venuti
, eds., Vol.
2
,
Springer
,
Cham, Switzerland
, pp.
1701
1722
.
2.
De Stefano
,
A.
,
Matta
,
E.
, and
Clemente
,
P.
,
2016
, “
Structural Health Monitoring of Historical Heritage in Italy: Some Relevant Experiences
,”
J. Civ. Struct. Health Monit.
,
6
(
1
), pp.
83
106
.
3.
Pinchuk
,
N.
,
Castellano
,
A.
,
Micello
,
D.
,
Camassa
,
D.
,
Diaferio
,
M.
, and
Fraddosio
,
A.
,
2024
, “
Dynamic Identification of the Collapse Mechanisms of a Masonry Arch
,” Proceedings of the
2024 IEEE International Workshop on Metrology for Living Environment, MetroLivEnv 2024
,
Milan, Italy
,
June 12–14
.
4.
Pinchuk
,
N.
,
Scuro
,
C.
,
Castellano
,
A.
,
Demarco
,
F.
,
Fusaro
,
P. A.
, and
Fraddosio
,
A.
,
2024
, “
Genetic Algorithms Applied to Nonlinear Analysis for the Identification of Masonry Structures Collapse Mechanisms
,”
Math. Mech. Complex Syst.
,
12
(
3
), pp.
233
261
.
5.
Carozzi
,
F. G.
,
Milani
,
G.
, and
Poggi
,
C.
,
2014
, “
Mechanical Properties and Numerical Modeling of Fabric Reinforced Cementitious Matrix (FRCM) Systems for Strengthening of Masonry Structures
,”
Compos. Struct.
,
107
, pp.
711
725
.
6.
Pinchuk
,
N.
, and
Byba
,
V.
,
2020
, “
Experimental Investigation of Masonry and Reinforced Masonry Walls Under Local Loading
,”
Lect. Notes Civ. Eng.
,
73
, pp.
205
213
.
7.
de Carvalho Bello
,
C. B.
,
Baraldi
,
D.
,
Cecchi
,
A.
, and
Oliveira
,
D. V.
,
2021
, “
Experimental Characterization of Masonry Panels Strengthened With NFRCM
,”
Key Eng. Mater.
,
898
, pp.
43
48
.
8.
De Felice
,
G.
,
de Santis
,
S.
,
Garmendia
,
L.
,
Ghiassi
,
B.
,
Larrinaga
,
P.
,
Lourenço
,
P. B.
,
Oliveira
,
D. V.
,
Paolacci
,
F.
, and
Papanicolaou
,
C. G.
,
2014
, “
Mortar-Based Systems for Externally Bonded Strengthening of Masonry
,”
Mater. Struct./Mater. Constr.
,
47
(
12
), pp.
2021
2037
.
9.
Castellano
,
A.
,
Fraddosio
,
A.
,
Scacco
,
J.
,
Milani
,
G.
, and
Piccioni
,
M. D.
,
2019
, “
Dynamic Response of FRCM Reinforced Masonry Arches
,”
Key Eng. Mater.
,
817
, pp.
285
292
.
10.
Bertolesi
,
E.
,
Milani
,
G.
,
Carozzi
,
F. G.
, and
Poggi
,
C.
,
2018
, “
Ancient Masonry Arches and Vaults Strengthened With TRM, SRG and FRP Composites: Numerical Analyses
,”
Compos. Struct.
,
187
, pp.
385
402
.
11.
Martellotta
,
G.
,
Piccinin
,
G.
,
Moldovan
,
M.
,
Fallarino
,
M.
, and
Rowan
,
K.
,
2023
, “
Comparison of Modern Approaches for the Analysis of Historic Masonry Buildings Case Study of St. Giacomo’s Church in Anagni
,”
Structural
,
247
(
22
), pp.
1
13
.
12.
Castellano
,
A.
,
Camassa
,
D.
,
Fraddosio
,
A.
,
Scacco
,
J.
,
Piccioni
,
M. D.
, and
Milani
,
G.
,
2021
, “
Dynamic Damage Identification for a Full-Scale Parabolic Tuff Barrel Vault Under Differential Settlements of the Supports
,”
Constr. Build. Mater.
,
291
, p.
123271
.
13.
Olivito
,
R. S.
,
Codispoti
,
R.
, and
Cevallos
,
O. A.
,
2016
, “
Bond Behavior of Flax-FRCM and PBO-FRCM Composites Applied on Clay Bricks: Experimental and Theoretical Study
,”
Compos. Struct.
,
146
, pp.
221
231
.
14.
Milani
,
G.
,
2023
, “
Semi-Analytical Mechanical Model for FRCM-to-Substrate Shear Bond Tests
,”
Composites, Part B
,
266
, p.
110983
.
15.
Ombres
,
L.
, and
Mazzuca
,
P.
,
2024
, “
Residual Flexural Behavior of PBO FRCM-Strengthened Reinforced Concrete Beams After Exposure to Elevated Temperatures
,”
J. Compos. Constr.
,
28
(
1
), p.
04023063
.
16.
Zou
,
X.
,
D'Antino
,
T.
, and
Sneed
,
L. H.
,
2023
, “
Analytical Study of the Bond Behavior of Fiber Reinforced Cementitious Matrix (FRCM)-Substrate Joints Based on a Two-Stage Nonlinear Cohesive Material law
,”
Compos. Struct.
,
304
, p.
116457
.
17.
Yuan
,
Y.
, and
Milani
,
G.
,
2022
, “
Closed-Form Solutions for FRP and FRCM Strengthening Systems Applied to Brittle Substrates
,”
AIP Conf. Proc.
2611
, p.
080004
.
18.
Castellano
,
A.
,
Fraddosio
,
A.
,
Oliveira
,
D. V.
,
Piccioni
,
M. D.
,
Ricci
,
E.
, and
Sacco
,
E.
,
2023
, “
An Effective Numerical Modelling Strategy for FRCM Strengthened Curved Masonry Structures
,”
Eng. Struct.
,
274
, p.
115116
.
19.
Boscato
,
G.
,
Reccia
,
E.
, and
Cecchi
,
A.
,
2018
, “
Non-Destructive Experimentation: Dynamic Identification of Multi-Leaf Masonry Walls Damaged and Consolidated
,”
Composites, Part B
,
133
, pp.
145
165
.
20.
Pinchuk
,
N.
,
Byba
,
V.
,
Fraddosio
,
A.
,
Castellano
,
A.
, and
Piccioni
,
M. D.
,
2024
, “
Experimental and Numerical Study of the
Indirect
Reinforcement Systems for Masonry Walls
,”
Civ. Eng. Archit.
,
12
(
2
), pp.
1282
1293
.
21.
Sergeychuk
,
O.
,
Martynov
,
V.
, and
Usenko
,
D.
,
2018
, “
The Definition of the Optimal Energy-Efficient Form of the Building
,”
Int. J. Eng. Technol. (UAE)
,
7
(
3
), pp.
667
671
.
22.
Mammadov
,
N.
, and
Byba
,
V.
,
2023
, “
Centralized Management of Thermal Energy Consumption Mode of Cities
,”
Lect. Notes Civ. Eng.
,
299
, pp.
741
747
.
23.
Mitrofanov
,
V.
,
Voskoboynik
,
P.
, and
Pinchuk
,
N.
,
2022
, “
Boundary Between Plane Stress and Plane Strain of Compression Concrete
,”
ACI Struct. J.
,
119
(
3
), pp.
43
52
.
24.
Kundu
,
T.
,
2003
,
Ultrasonic Nondestructive Evaluation: Engineering and Biological Material Characterization
,
CRC Press
,
Boca Raton, FL
.
25.
Kundu
,
T.
,
Eiras
,
J. N.
,
Li
,
W.
,
Liu
,
P.
,
Sohn
,
H.
, and
Payá
,
J.
,
2019
, “Fundamentals of Nonlinear Acoustical Techniques and Sideband Peak Count,”
Nonlinear Ultrasonic and Vibro-Acoustical Techniques for Nondestructive Evaluation
,
T.
Kundu
, ed.,
Springer
,
Cham
, pp.
1
88
.
26.
Castellano
,
A.
,
Fraddosio
,
A.
,
Piccioni
,
M. D.
, and
Kundu
,
T.
,
2021
, “
Linear and Nonlinear Ultrasonic Techniques for Monitoring Stress-Induced Damages in Concrete
,”
ASME J. Nondestr. Eval. Diagn. Progn. Eng. Syst.
,
4
(
4
), p.
041001
.
27.
Castellano
,
A.
,
Fraddosio
,
A.
,
Paparella
,
F.
,
Piccioni
,
M. D.
, and
Kundu
,
T.
,
2023
, “
The Evaluation of the Adhesion Defects in FRCM Reinforcements for Masonry Constructions by Sideband Peak Count Based Nonlinear Acoustic Technique
,”
J. Vib. Control.
28.
Castellano
,
A.
,
Fraddosio
,
A.
,
Martellotta
,
G.
,
Paparella
,
F.
,
Piccioni
,
M. D.
, and
Kundu
,
T.
,
2024
, “
Non-Linear Ultrasonic Approach for the Characterization of Mode II Debonding Behavior of FRCM Reinforcements for Masonry Constructions
,”
Proceedings of the 2024 IEEE International Workshop on Metrology for Living Environment, MetroLivEnv 2024
,
Milan, Italy
,
June 12–14
.
29.
Alnuaimi
,
H.
,
Amjad
,
U.
,
Russo
,
P.
,
Lopresto
,
V.
, and
Kundu
,
T.
,
2021
, “
Monitoring Damage in Composite Plates From Crack Initiation to Macro-Crack Propagation Combining Linear and Nonlinear Ultrasonic Techniques
,”
Struct. Health Monit.
,
20
(
1
), pp.
139
150
.
30.
Zhang
,
G.
,
Hu
,
B.
,
Alnuaimi
,
H.
,
Amjad
,
U.
, and
Kundu
,
T.
,
2024
, “
Numerical Modeling With Experimental Verification Investigating the Effect of Various Nonlinearities on the Sideband Peak Count-Index Technique
,”
Ultrasonics
,
138
, p.
107259
.
31.
Lu
,
R.
,
Shen
,
Y.
,
Zhang
,
B.
, and
Xu
,
W.
,
2023
, “
Nonlinear Electro-Mechanical Impedance Spectroscopy for Fatigue Crack Monitoring
,”
Mech. Syst. Signal Process.
,
184
, p.
109749
.
32.
Lu
,
R.
, and
Shen
,
Y.
,
2024
, “
Entire Loosening Stage Monitoring of Bolted Joints via Nonlinear Electro-Mechanical Impedance Spectroscopy
,”
Struct. Health Monit.
33.
Siva Shashidhara Reddy
,
S.
,
Balasubramaniam
,
K.
,
Krishnamurthy
,
C. V.
, and
Shankar
,
M.
,
2005
, “
Ultrasonic Goniometry Immersion Techniques for the Measurement of Elastic Moduli
,”
Compos. Struct.
,
67
(
1
), pp.
3
17
.
34.
Margueres
,
P.
,
Meraghni
,
F.
, and
Benzeggagh
,
M. L.
,
2000
, “
Comparison of Stiffness Measurements and Damage Investigation Techniques for a Fatigued and Post-Impact Fatigued GFRP Composite Obtained by RTM Process
,”
Composites, Part A
,
31
(
2
), pp.
151
163
.
35.
Yan
,
D.
,
Drinkwater
,
B. W.
, and
Neild
,
S. A.
,
2009
, “
Measurement of the Ultrasonic Nonlinearity of Kissing Bonds in Adhesive Joints
,”
NDT and E Int.
,
42
(
5
), pp.
459
466
.
36.
Diaferio
,
M.
, and
Vitti
,
M.
,
2021
, “
Correlation Curves to Characterize Concrete Strength by Means of UPV Tests
,”
Lect. Notes Civ. Eng.
,
110
, pp.
209
218
.
37.
Liu
,
P.
,
Sohn
,
H.
,
Kundu
,
T.
, and
Yang
,
S.
,
2014
, “
Noncontact Detection of Fatigue Cracks by Laser Nonlinear Wave Modulation Spectroscopy (LNWMS)
,”
NDT and E Int.
,
66
, pp.
106
116
.
38.
D’Antino
,
T.
,
Colombi
,
P.
,
Carloni
,
C.
, and
Sneed
,
L. H.
,
2018
, “
Estimation of a Matrix-Fiber Interface Cohesive Material Law in FRCM Concrete Joints
,”
Compos. Struct.
,
193
, pp.
103
112
.
39.
Pinchuk
,
N.
,
Byba
,
V.
, and
Mammadov
,
N.
,
2023
, “
Experimental Studies of Compressed Reinforced Concrete Elements With Tape Reinforcement
,”
Lect. Notes Civ. Eng.
,
299
, pp.
25
33
.
40.
Giordano
,
E.
,
Masciotta
,
M. G.
,
Clementi
,
F.
, and
Ghiassi
,
B.
,
2023
, “
Numerical Prediction of the Mechanical Behavior of TRM Composites and TRM-Strengthened Masonry Panels
,”
Constr. Build. Mater.
,
397
, p.
132376
.
41.
Pinchuk
,
N.
,
Fenko
,
O.
, and
Kyrychenko
,
V.
,
2018
, “
The Stress-Strain State Computer Modelling of Reinforced Masonry Under Local Loading
,”
Int. J. Eng. Technol. (UAE)
,
7
(
3
), pp.
316
321
.
42.
Diaferio
,
M.
, and
Foti
,
D.
,
2016
, “
Mechanical Behavior of Buildings Subjected to Impulsive Motions
,”
Bull. Earthquake Eng.
,
14
(
3
), pp.
849
862
.
43.
Benzeggagh
,
M. L.
, and
Kenane
,
M.
,
1996
, “
Measurement of Mixed-Mode Delamination Fracture Toughness of Unidirectional Glass/Epoxy Composites With Mixed-Mode Bending Apparatus
,”
Compos. Sci. Technol.
,
56
(
4
), pp.
439
449
.
44.
Camanho
,
P. P.
, and
Davila
,
C. G.
,
2002
, “Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials,” http://www.sti.nasa.gov, Accessed July 30, 2021.
45.
Wang
,
M.
,
Pau
,
A.
,
Zhang
,
G.
, and
Kundu
,
T.
,
2023
, “
Monitoring Prestress in Plates by Sideband Peak Count-Index (SPC-I) and Non-Linear Higher Harmonics Techniques
,”
Nonlinear Dyn.
,
111
(
17
), pp.
15749
15766
.
46.
Park
,
S.
, and
Kundu
,
T.
,
2023
, “
A Modified Sideband Peak Count Based Nonlinear Ultrasonic Technique for Material Characterization
,”
Ultrasonics
,
128
, p.
106858
.
47.
Sasmal
,
S.
,
Basu
,
S.
,
Himakar
,
C.
, and
Kundu
,
T.
,
2023
, “
Detection of Interface Flaws in Concrete-FRP Composite Structures Using Linear and Nonlinear Ultrasonics Based Techniques
,”
Ultrasonics
,
132
, p.
107007
.
You do not currently have access to this content.