Abstract

A system health index is a measurement of the health condition of complex systems. However, most of the health indices are developed based on strong assumptions. Consequently, existing health indices are not capable of measuring the actual deterioration behaviors with high accuracy. To address this issue, we introduce a probabilistic graphical model to examine the probabilistic relationships among sensor signals, remaining useful life (RUL), and health indices. Based on the graphical model, three types of conditional probabilistic autoencoders are combined to develop the health indices of a complex aero-propulsion system. The proposed method is demonstrated on an engine dataset. The experimental results have shown that the proposed method is capable of constructing robust health indices as well as improving the accuracy of RUL prediction.

References

1.
Gorjian
,
N.
,
Ma
,
L.
,
Mittinty
,
M.
,
Yarlagadda
,
P.
, and
Sun
,
Y.
,
2010
, “A Review on Degradation Models in Reliability Analysis,”
Engineering Asset Lifecycle Management
,
D.
Kiritsis
,
C.
Emmanouilidis
,
A.
Koronios
, and
J.
Mathew
, eds.,
Springer
,
London
, pp.
369
384
.
2.
Shahraki
,
A. F.
,
Yadav
,
O. P.
, and
Liao
,
H.
,
2017
, “
A Review on Degradation Modelling and Its Engineering Applications
,”
Int. J. Performab. Eng.
,
13
(
3
), pp.
299
314
.
3.
Wei
,
Y.
,
Wu
,
D.
, and
Terpenny
,
J.
,
2021
, “
Learning the Health Index of Complex Systems Using Dynamic Conditional Variational Autoencoders
,”
Reliab. Eng. Syst. Saf.
,
216
, p.
108004
.
4.
Li
,
Z.
,
Goebel
,
K.
, and
Wu
,
D.
,
2019
, “
Degradation Modeling and Remaining Useful Life Prediction of Aircraft Engines Using Ensemble Learning
,”
ASME J. Eng. Gas Turbines Power
,
141
(
4
), p. 041008.
5.
Wei
,
J.
,
Dong
,
G.
, and
Chen
,
Z.
,
2017
, “
Remaining Useful Life Prediction and State of Health Diagnosis for Lithium-Ion Batteries Using Particle Filter and Support Vector Regression
,”
IEEE Trans. Ind. Electron.
,
65
(
7
), pp.
5634
5643
.
6.
Cui
,
L.
,
Wang
,
X.
,
Wang
,
H.
, and
Ma
,
J.
,
2019
, “
Research on Remaining Useful Life Prediction of Rolling Element Bearings Based on Time-Varying Kalman Filter
,”
IEEE Trans. Instrum. Meas.
,
69
(
6
), pp.
2858
2867
.
7.
Guo
,
R.
, and
Sui
,
J.
,
2019
, “
Remaining Useful Life Prognostics for the Electrohydraulic Servo Actuator Using Hellinger Distance-Based Particle Filter
,”
IEEE Trans. Instrum. Meas.
,
69
(
4
), pp.
1148
1158
.
8.
Rathore
,
M. S.
, and
Harsha
,
S. P.
,
2021
, “
Prognostic Analysis of High-Speed Cylindrical Roller Bearing Using Weibull Distribution and k-Nearest Neighbor
,”
ASME J. Nondestr. Eval. Diagn. Progn. Eng. Syst.
,
5
(
1
), p.
011005
.
9.
Ramachandran
,
M.
, and
Siddique
,
Z.
,
2019
, “
A Data-Driven, Statistical Feature-Based, Neural Network Method for Rotary Seal Prognostics
,”
ASME J. Nondestr. Eval. Diagn. Progn. Eng. Syst.
,
2
(
2
), p. 024501.
10.
Wei
,
Y.
,
Wu
,
D.
, and
Terpenny
,
J.
,
2021
, “
Decision-Level Data Fusion in Quality Control and Predictive Maintenance
,”
IEEE Trans. Autom. Sci. Eng.
, 18(1), pp.
184
194
.
11.
Liu
,
K.
,
Gebraeel
,
N. Z.
, and
Shi
,
J.
,
2013
, “
A Data-Level Fusion Model for Developing Composite Health Indices for Degradation Modeling and Prognostic Analysis
,”
IEEE Trans. Autom. Sci. Eng.
,
10
(
3
), pp.
652
664
.
12.
Wei
,
Y.
,
Wu
,
D.
, and
Terpenny
,
J.
,
2018
, “
Predictive Maintenance for Aircraft Engines Using Data Fusion
,”
2018 Institute of Industrial and Systems Engineers Annual Conference and Expo, IISE 2018
,
Orlando, FL
,
May 19
, pp.
895
900
.
13.
Liu
,
K.
, and
Huang
,
S.
,
2014
, “
Integration of Data Fusion Methodology and Degradation Modeling Process to Improve Prognostics
,”
IEEE Trans. Autom. Sci. Eng.
,
13
(
1
), pp.
344
354
.
14.
Liu
,
K.
,
Chehade
,
A.
, and
Song
,
C.
,
2015
, “
Optimize the Signal Quality of the Composite Health Index via Data Fusion for Degradation Modeling and Prognostic Analysis
,”
IEEE Trans. Autom. Sci. Eng.
,
14
(
3
), pp.
1504
1514
.
15.
Yan
,
T.
,
Wang
,
D.
,
Kong
,
J.-Z.
,
Xia
,
T.
,
Peng
,
Z.
, and
Xi
,
L.
,
2021
, “
Definition of Signal-to-Noise Ratio of Health Indicators and Its Analytic Optimization for Machine Performance Degradation Assessment
,”
IEEE Trans. Instrum. Meas.
,
70
, pp.
1
16
.
16.
Wei
,
Y.
,
Wu
,
D.
, and
Terpenny
,
J.
,
2020
, “
Robust Incipient Fault Detection of Complex Systems Using Data Fusion
,”
IEEE Trans. Instrum. Meas.
,
69
(
12
), pp.
9526
9534
.
17.
Guo
,
L.
,
Lei
,
Y.
,
Li
,
N.
,
Yan
,
T.
, and
Li
,
N.
,
2018
, “
Machinery Health Indicator Construction Based on Convolutional Neural Networks Considering Trend Burr
,”
Neurocomputing
,
292
, pp.
142
150
.
18.
Guo
,
L.
,
Li
,
N.
,
Jia
,
F.
,
Lei
,
Y.
, and
Lin
,
J.
,
2017
, “
A Recurrent Neural Network Based Health Indicator for Remaining Useful Life Prediction of Bearings
,”
Neurocomputing
,
240
, pp.
98
109
.
19.
Kingma
,
D. P.
, and
Welling
,
M.
,
2013
, “
Auto-Encoding Variational Bayes
.” arXiv preprint arXiv:1312.6114.
20.
Doersch
,
C.
,
2016
, “
Tutorial on Variational Autoencoders
.” arXiv preprint arXiv:1606.05908.
21.
Pandey
,
G.
, and
Dukkipati
,
A.
,
2017
, “
Variational Methods for Conditional Multimodal Deep Learning
,”
2017 International Joint Conference on Neural Networks (IJCNN)
,
Anchorage, AK
,
July 3
,
IEEE
, pp.
308
315
.
22.
Zhao
,
T.
,
Zhao
,
R.
, and
Eskenazi
,
M.
,
2017
, “
Learning Discourse-Level Diversity for Neural Dialog Models Using Conditional Variational Autoencoders
.” arXiv preprint arXiv:1703.10960.
23.
Sohn
,
K.
,
Lee
,
H.
, and
Yan
,
X.
,
2015
, “
Learning Structured Output Representation Using Deep Conditional Generative Models
,”
Adv. Neural Inform. Process. Syst.
,
28
, pp.
3483
3491
.
24.
Frederick
,
D.
,
DeCastro
,
J.
, and
Litt
,
J.
,
2007
, “
User’s Guide for the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS)
,” NASA/ARL, Tech. Manual TM2007-215026.
25.
Saxena
,
A.
,
Goebel
,
K.
,
Simon
,
D.
, and
Eklund
,
N.
,
2008
, “
Damage Propagation Modeling
for
Aircraft Engine Run-to-Failure Simulation
,”
2008 International Conference on Prognostics and Health Management
,
Denver, CO
,
Dec. 12
,
IEEE
, pp.
1
9
.
26.
Kwon
,
S.-J.
,
Han
,
D.
,
Choi
,
J. H.
,
Lim
,
J.-H.
,
Lee
,
S.-E.
, and
Kim
,
J.
,
2020
, “
Remaining-Useful-Life Prediction via Multiple Linear Regression and Recurrent Neural Network Reflecting Degradation Information of 20Ah LiNixMnyCo1− x− yO2 Pouch Cell
,”
J. Electroanal. Chem.
,
858
, p.
113729
.
You do not currently have access to this content.