Abstract

In guided wave structural health monitoring (GW-SHM), a strong need for reliable and fast simulation tools has been expressed throughout the literature to optimize SHM systems or demonstrate performance. Even though guided wave simulations can be conducted with most finite elements software packages, computational and hardware costs are always prohibitive for large simulation campaigns. A novel SHM module has been recently added to the civa software and relies on unassembled high-order finite elements to overcome these limitations. This article focuses on the thorough validation of civa for SHM to identify the limits of the models. After introducing the key elements of the civa SHM solution, a first validation is presented on a stainless steel pipe representative of the oil and gas industry. Second, validation is conducted on a composite panel with and without stiffener representative of some structures in the aerospace industry. Results show a good match between the experimental and simulated datasets, but only if the input parameters are fully determined before the simulations.

References

1.
Kulakovskyi
,
A.
,
Mesnil
,
O.
,
Chapuis
,
B.
, and
Lhemery
,
A.
,
2021
, “
Statistical Analysis of Guided Wave Imaging Algorithms Performance Illustrated by a Simple SHM Configuration
,”
ASME J. Nondestructive Evaluation
,
4
(
3
), p.
031001
.
2.
Druet
,
T.
,
Tastet
,
J.-L.
,
Chapuis
,
B.
, and
Moulin
,
E.
,
2019
, “
Autocalibration Method for Guided Wave Tomography With Undersampled Data
,”
Wave Motion
,
89
, pp.
265
283
.
3.
Baronian
,
V.
,
Bourgeois
,
L.
,
Chapuis
,
B.
, and
Recoquillay
,
A.
,
2018
, “
Linear Sampling Method Applied to Non Destructive Testing of An Elastic Waveguide: Theory, Numerics and Experiments
,”
Inverse Prob.
,
34
(
7
), p.
075006
.
4.
Miorelli
,
R.
,
Kulakovskyi
,
A.
,
Chapuis
,
B.
,
d'Almeida
,
O.
, and
Mesnil
,
O.
,
2021
, “
Supervised learning strategy for classification and regression tasks applied to aeronautical structural health monitoring problems
,”
Ultrasonics
,
113
, p.
106372
.
5.
Bartoli
,
I.
,
Marzani
,
A.
,
Di Scalea
,
F. L.
, and
Viola
,
E.
,
2006
, “
Modeling Wave Propagation in Damped Waveguides of Arbitrary Cross-Section
,”
J. Sound Vib.
,
295
(
3–5
), pp.
685
707
.
6.
Treyssède
,
F.
, and
Laguerre
,
L.
,
2013
, “
Numerical and Analytical Calculation of Modal Excitability for Elastic Wave Generation in Lossy Waveguides
,”
J. Acoust. Soc. Am.
,
133
(
6
), pp.
3827
3837
.
7.
Barras
,
J.
,
Lhémery
,
A.
, and
Impériale
,
A.
,
2020
, “
Modal Pencil Method for the Radiation of Guided Wave Fields in Finite Isotropic Plates Validated by a Transient Spectral Finite Element Method
,”
Ultrasonics
,
103
, p.
106078
.
8.
Gopalakrishnan
,
S.
,
Chakraborty
,
A.
, and
Mahapatra
,
D. R.
,
2007
,
Spectral Finite Element Method: Wave Propagation, Diagnostics and Control in Anisotropic and Inhomogeneous Structures
,
Springer Science & Business Media
,
Berlin, Germany
.
9.
Baronian
,
V.
,
Lhémery
,
A.
, and
Jezzine
,
K.
,
2011
, “
Hybrid Safe/Fe Simulation of Inspections of Elastic Waveguides Containing Several Local Discontinuities Or Defects
,”
QNDE
,
San Diego, CA
,
July 18–23
, pp.
183
190
.
10.
Benmeddour
,
F.
,
Treyssède
,
F.
, and
Laguerre
,
L.
,
2011
, “
Numerical Modeling of Guided Wave Interaction With Non-Axisymmetric Cracks in Elastic Cylinders
,”
Int. J. Solids Struct.
,
48
(
5
), pp.
764
774
.
11.
Mesnil
,
O.
,
Imperiale
,
A.
,
Demaldent
,
E.
,
Baronian
,
V.
, and
Chapuis
,
B.
,
2018
, “
Simulation Tools for Guided Wave Based Structural Health Monitoring
,”
QNDE
,
Provo, UT
,
July 16–21
, Vol.
1949
,
AIP Publishing
, p.
050001
.
12.
Leckey
,
C. A.
,
Wheeler
,
K. R.
,
Hafiychuk
,
V. N.
,
Hafiychuk
,
H.
, and
Timuçin
,
D. A.
,
2018
, “
Simulation of Guided-Wave Ultrasound Propagation in Composite Laminates: BenchMark Comparisons of Numerical Codes and Experiment
,”
Ultrasonics
,
84
, pp.
187
200
.
13.
Huthwaite
,
P.
,
2014
, “
Accelerated Finite Element Elastodynamic Simulations Using the GPU
,”
J. Comput. Phys.
,
257
, pp.
687
707
.
14.
Shen
,
Y.
, and
Cesnik
,
C. E.
,
2015
, “
Hybrid Local FEM/Global Lisa Modeling of Guided Wave Propagation and Interaction With Damage in Composite Structures
,”
SPIE
,
San Diego, CA
,
International Society for Optics and Photonics
, p.
94380J
.
15.
Kudela
,
P.
,
Moll
,
J.
, and
Fiborek
,
P.
,
2020
, “
Parallel Spectral Element Method for Guided Wave Based Structural Health Monitoring
,”
Smart Mater. Struct.
,
29
(
9
), p.
095010
.
16.
Gregory
,
E.
,
2020
, “
GPU Accelerated Simulation for UT Inspection of Aerospace Materials
,”
NDT In Aerospace
,
Virtual
,
Oct. 6–8
.
17.
Ostachowicz
,
W.
,
Kudela
,
P.
,
Krawczuk
,
M.
, and
Zak
,
A.
,
2011
,
Guided Waves in Structures for SHM: The Time-Domain Spectral Element Method
,
John Wiley & Sons
,
Hoboken, NJ
.
18.
Kudela
,
P.
,
2016
, “
Parallel Implementation of Spectral Element Method for Lamb Wave Propagation Modeling
,”
Int. J. Numer. Methods Eng.
,
106
(
6
), pp.
413
429
.
19.
Imperiale
,
A.
, and
Demaldent
,
E.
,
2019
, “
A Macro-Element Strategy Based Upon Spectral Finite Elements and Mortar Elements for Transient Wave Propagation Modeling. Application to Ultrasonic Testing of Laminate Composite Materials
,”
Int. J. Numer. Methods Eng.
,
119
(
10
), pp.
964
990
.
20.
Mesnil
,
O.
,
Imperiale
,
A.
,
Demaldent
,
E.
, and
Chapuis
,
B.
,
2019
, “
Validation of Spectral Finite Element Simulation Tools Dedicated to Guided Wave Based Structure Health Monitoring
,”
AIP Conf. Proc.
,
2102
, p.
050018
.
21.
Moll
,
J.
,
Kathol
,
J.
,
Fritzen
,
C.-P.
,
Moix-Bonet
,
M.
,
Rennoch
,
M.
,
Koerdt
,
M.
,
Herrmann
,
A. S.
,
Sause
,
M. G.
, and
Bach
,
M.
,
2019
, “
Open Guided Waves: Online Platform for Ultrasonic Guided Wave Measurements
,”
Struct. Health Monit.
,
18
(
5–6
), pp.
1903
1914
.
22.
De Basabe
,
J. D.
, and
Sen
,
M. K.
,
2007
, “
Grid Dispersion and Stability Criteria of Some Common Finite-Element Methods for Acoustic and Elastic Wave Equations
,”
Geophysics
,
72
(
6
), pp.
T81
T95
.
23.
Imperiale
,
A.
,
Leymarie
,
N.
, and
Demaldent
,
E.
,
2020
, “
Numerical Modeling of Wave Propagation in Anisotropic Viscoelastic Laminated Materials in Transient Regime: Application to Modeling Ultrasonic Testing of Composite Structures
,”
Int. J. Numer. Methods Eng.
,
121
(
15
), pp.
3300
3338
.
24.
Crawley
,
E. F.
, and
De Luis
,
J.
,
1987
, “
Use of Piezoelectric Actuators as Elements of Intelligent Structures
,”
AIAA J.
,
25
(
10
), pp.
1373
1385
.
25.
Marlett
,
K.
,
Ng
,
Y.
, and
Tomblin
,
J.
,
2011
, “Hexcel 8552 IM7 Unidirectional Prepreg 190 gsm & 35% RC Qualification Material Property Data Report,”
National Center for Advanced Materials Performance
,
Wichita, KS
,
Test Report No. CAM-RP-2009-015, Rev. A
, pp.
1
238
.
26.
Comsol
,
2020
, “
How Much Memory Is Needed to Solve Large Comsol Models?
” Comsol Blog, https://www.comsol.com/blogs/much-memory-needed-solve-large-comsol-models/, Accessed April 2021.
27.
Hay
,
T.
,
Royer
,
R.
,
Gao
,
H.
,
Zhao
,
X.
, and
Rose
,
J. L.
,
2006
, “
A Comparison of Embedded Sensor Lamb Wave Ultrasonic Tomography Approaches for Material Loss Detection
,”
Smart Mater. Struct.
,
15
(
4
), p.
946
.
28.
Moll
,
J.
,
Kexel
,
C.
,
Kathol
,
J.
,
Fritzen
,
C.-P.
,
Moix-Bonet
,
M.
,
Willberg
,
C.
,
Rennoch
,
M.
,
Koerdt
,
M.
, and
Herrmann
,
A.
,
2020
, “
Guided Waves for Damage Detection in Complex Composite Structures: The Influence of Omega Stringer and Different Reference Damage Size
,”
Appl. Sci.
,
10
(
9
), p.
3068
.
You do not currently have access to this content.