Abstract

Bearing defects are major causes for rotary machine breakdown; hence, the dynamic behavior of bearing is crucial and important. This paper aims to present the dynamic response of bearing due to various localized defects. To study the parametric effect, three factors such as load, speed, and defect size are chosen. The Box–Behnkan method has been used to get trials to plot response surfaces. A bearing test rig has been used for experimentation with high speed, which is capable of high loading to introduce and simulate industrial application environment. Vibration and torque data have been acquired using high-precision sensors and data acquisition system. Fast Fourier transform (FFT) vibration peak and torque peak-to-peak (P2P) have been taken as the output parameter. It is observed that speed has a significant effect on both outputs and affects the bearing performance more than load. Response surfaces show that a change in load has less impact on vibration amplitude, while small variation of speed considerably increases vibration values. On the other hand, both parameters, load and speed, has a strong impact on peak-to-peak torque.

References

1.
Tandon
,
N.
, and
Choudhury
,
A.
,
1997
, “
An Analytical Model for the Prediction of the Vibration Response of Rolling Element Bearings Due to a Localized Defect
,”
J. Sound Vib.
,
205
(
3
), pp.
275
292
. 10.1006/jsvi.1997.1031
2.
Lynagh
,
N.
,
Rahnejat
,
H.
,
Ebrahimi
,
M.
, and
Aini
,
R.
,
2000
, “
Bearing Induced Vibration in Precision High Speed Routing Spindles
,”
Int. J. Mach. Tools Manuf.
,
40
(
4
), pp.
561
577
. 10.1016/S0890-6955(99)00076-0
3.
Moazen Ahmadi
,
A.
,
Petersen
,
D.
, and
Howard
,
C.
,
2015
, “
A Nonlinear Dynamic Vibration Model of Defective Bearings—The Importance of Modelling the Finite Size of Rolling Elements
,”
Mech. Syst. Signal Process.
,
52–53
(
1
), pp.
309
326
. 10.1016/j.ymssp.2014.06.006
4.
Harsha
,
S. P.
,
Sandeep
,
K.
, and
Prakash
,
R.
,
2004
, “
Non-Linear Dynamic Behaviors of Rolling Element Bearings Due to Surface Waviness
,”
J. Sound Vib.
,
272
(
3–5
), pp.
557
580
. 10.1016/S0022-460X(03)00384-5
5.
Petersen
,
D.
,
Howard
,
C.
,
Sawalhi
,
N.
,
Moazen Ahmadi
,
A.
, and
Singh
,
S.
,
2015
, “
Analysis of Bearing Stiffness Variations, Contact Forces and Vibrations in Radially Loaded Double Row Rolling Element Bearings With Raceway Defects
,”
Mech. Syst. Signal Process.
,
50–51
, pp.
139
160
. 10.1016/j.ymssp.2014.04.014
6.
Sawalhi
,
N.
, and
Randall
,
R. B.
,
2011
, “
Vibration Response of Spalled Rolling Element Bearings: Observations, Simulations and Signal Processing Techniques to Track the Spall Size
,”
Mech. Syst. Signal Process.
,
25
(
3
), pp.
846
870
. 10.1016/j.ymssp.2010.09.009
7.
Patil
,
M. S.
,
Mathew
,
J.
,
Rajendrakumar
,
P. K.
, and
Desai
,
S.
,
2010
, “
A Theoretical Model to Predict the Effect of Localized Defect on Vibrations Associated With Ball Bearing
,”
Int. J. Mech. Sci.
,
52
(
9
), pp.
1193
1201
. 10.1016/j.ijmecsci.2010.05.005
8.
Patra
,
P.
,
Saran
,
V. H.
, and
Harsha
,
S.
,
2019
, “
Non-Linear Dynamic Response Analysis of Cylindrical Roller Bearings Due to Rotational Speed
,”
Proc. Inst. Mech. Eng. Part K: J. Multi-body Dyn.
,
233
(
2
), pp.
379
390
. 10.1177/1464419318762678
9.
Choudhury
,
A.
, and
Tandon
,
N.
,
2006
, “
Vibration Response of Rolling Element Bearings in a Rotor Bearing System to a Local Defect Under Radial Load
,”
ASME J. Tribol.
,
128
(
2
), pp.
252
261
. 10.1115/1.2164467
10.
Harsha
,
S. P.
,
Sandeep
,
K.
, and
Prakash
,
R.
,
2003
, “
The Effect of Speed of Balanced Rotor on Nonlinear Vibrations Associated With Ball Bearings
,”
Int. J. Mech. Sci.
,
45
(
4
), pp.
725
740
. 10.1016/S0020-7403(03)00064-X
11.
Harsha
,
S. P.
,
Sandeep
,
K.
, and
Prakash
,
R.
,
2004
, “
Nonlinear Dynamic Response of a Rotor Bearing System Due to Surface Waviness
,”
Nonlinear Dyn.
,
37
(
2
), pp.
91
114
. 10.1023/B:NODY.0000042916.10351.ff
12.
Sharma
,
A.
,
Amarnath
,
M.
, and
Kankar
,
P. K.
,
2019
, “
Nonlinear Dynamic Analysis of Defective Rolling Element Bearing Using Higuchi’s Fractal Dimension
,”
Sādhanā
,
44
(
4
), p.
76
. 10.1007/s12046-019-1060-x
13.
Pandya
,
D. H.
,
Upadhyay
,
S. H.
, and
Harsha
,
S. P.
,
2014
, “
Nonlinear Dynamic Analysis of High Speed Bearings Due to Combined Localized Defects
,”
JVC/J. Vib. Control
,
20
(
15
), pp.
2300
2313
. 10.1177/1077546313483790
14.
Singh
,
P.
, and
Harsha
,
S. P.
,
2018
, “
Finite Element Analysis of Cartridge Tapered Roller Bearing of Freight Wagon
,”
Int. J. Veh. Struct. Syst.
,
10
(
3
), pp.
174
178
. 10.4273/ijvss.10.3.04
15.
Li
,
X.
,
Zheng
,
A.
,
Zhang
,
X.
,
Li
,
C.
, and
Zhang
,
L.
,
2013
, “
Rolling Element Bearing Fault Detection Using Support Vector Machine With Improved Ant Colony Optimization
,”
Meas. J. Int. Meas. Confed.
,
46
(
8
), pp.
2726
2734
. 10.1016/j.measurement.2013.04.081
16.
Sugumaran
,
V.
, and
Ramachandran
,
K. I.
,
2011
, “
Effect of Number of Features on Classification of Roller Bearing Faults Using SVM and PSVM
,”
Expert Syst. Appl.
,
38
(
4
), pp.
4088
4096
. 10.1016/j.eswa.2010.09.072
17.
Samanta
,
B.
,
Al-Balushi
,
K. R.
, and
Al-Araimi
,
S. A.
,
2003
, “
Artificial Neural Networks and Support Vector Machines With Genetic Algorithm for Bearing Fault Detection
,”
Eng. Appl. Artif. Intell.
,
16
(
7–8
), pp.
657
665
. 10.1016/j.engappai.2003.09.006
18.
Unal
,
M.
,
Onat
,
M.
,
Demetgul
,
M.
, and
Kucuk
,
H.
,
2014
, “
Fault Diagnosis of Rolling Bearings Using a Genetic Algorithm Optimized Neural Network
,”
Meas. J. Int. Meas. Confed.
,
58
, pp.
187
196
. 10.1016/j.measurement.2014.08.041
19.
Jamadar
,
I. M.
, and
Vakharia
,
D. P.
,
2016
, “
A Novel Approach Integrating Dimensional Analysis and Neural Networks for the Detection of Localized Faults in Roller Bearings
,”
Meas. J. Int. Meas. Confed.
,
94
, pp.
177
185
. 10.1016/j.measurement.2016.07.086
20.
Dhamande
,
L. S.
, and
Chaudhari
,
M. B.
,
2018
, “
Compound Gear-Bearing Fault Feature Extraction Using Statistical Features Based on Time-Frequency Method
,”
Meas. J. Int. Meas. Confed.
,
125
, pp.
63
77
. 10.1016/j.measurement.2018.04.059
21.
Singh
,
P.
, and
Harsha
,
S.
,
2019
, “
Statistical and Frequency Analysis of Vibrations Signals of Roller Bearings Using Empirical Mode Decomposition
,”
Proc. Inst. Mech. Eng. Part K: J. Multi-Body Dyn.
,
233
(
4
), pp.
856
870
. 10.1177/1464419319847921
22.
Ben Ali
,
J.
,
Fnaiech
,
N.
,
Saidi
,
L.
,
Chebel-Morello
,
B.
, and
Fnaiech
,
F.
,
2015
, “
Application of Empirical Mode Decomposition and Artificial Neural Network for Automatic Bearing Fault Diagnosis Based on Vibration Signals
,”
Appl. Acoust.
,
89
, pp.
16
27
. 10.1016/j.apacoust.2014.08.016
23.
Manoharan
,
C.
, and
Arunachalam
,
V. P.
,
2008
, “
Dynamic Analysis of Hydrodynamic Bearing Performance in Ic Engines by Using Taguchi Technique and Response Surface Methodology (RSM)
,”
Int. J. Adv. Manuf. Technol.
,
36
(
11–12
), pp.
1061
1071
. 10.1007/s00170-007-0927-x
24.
Kankar
,
P. K.
,
Harsha
,
S. P.
,
Kumar
,
P.
, and
Sharma
,
S. C.
,
2009
, “
Fault Diagnosis of a Rotor Bearing System Using Response Surface Method
,”
Eur. J. Mech. A/Solids
,
28
(
4
), pp.
841
857
. 10.1016/j.euromechsol.2009.03.004
25.
Kankar
,
P. K.
,
Sharma
,
S. C.
, and
Harsha
,
S. P.
,
2011
, “
Fault Diagnosis of High Speed Rolling Element Bearings Due to Localized Defects Using Response Surface Method
,”
ASME J. Dyn. Syst. Meas. Control
,
133
(
3
), p.
031007
. 10.1115/1.4003371
26.
Lostado
,
R.
,
Escribano García
,
R.
, and
Fernandez Martinez
,
R.
,
2016
, “
Optimization of Operating Conditions for a Double-Row Tapered Roller Bearing
,”
Int. J. Mech. Mater. Des.
,
12
(
3
), pp.
353
373
. 10.1007/s10999-015-9311-4
27.
Lostado
,
R.
,
Escribano
,
R.
,
Fernandez Martinez
,
R.
, and
Mac Donald
,
B. J.
,
2015
, “Combining the Finite Element Method and Response Surface Methodology for Adjustment of Contact Stress Ratios in Tapered Roller Bearings,”
New Trends in Mechanism and Machine Science
,
P.
Flores
, and
F.
Viadero
, eds.,
Springer International Publishing
,
Cham
, pp.
957
964
.
28.
Patil
,
M. S.
,
Mathew
,
J.
,
Rajendrakumar
,
P. K.
, and
Karade
,
S.
,
2010
, “
Experimental Studies Using Response Surface Methodology for Condition Monitoring of Ball Bearings
,”
ASME J. Tribol.
,
132
(
4
), p.
044505
. 10.1115/1.4002520
29.
Kankar
,
P.
,
Sharma
,
S. C.
, and
Harsha
,
S.
,
2013
, “
Vibration Signature Analysis of a High Speed Rotor Supported on Ball Bearings Due to Localized Defects
,”
J. Vib. Control
,
19
(
12
), pp.
1833
1853
. 10.1177/1077546312448506
30.
Box
,
G. E. P.
, and
Wilson
,
K. B.
,
1951
, “
On the Experimental Attainment of Optimum Conditions
,”
J. R. Stat. Soc.
,
13
(
1
), pp.
1
45
.
31.
Montgomery
,
D.
,
2001
,
Design and Analysis of Experiments
, 5th ed.,
John Wiley Sons
,
New York
.
32.
Carley
,
K. M.
,
Kamneva
,
N. Y.
, and
Reminga
,
J.
,
2004
, “
Response Surface Methodology 1 CASOS
,”
Technical Report
. http://www.casos.cs.cmu.edu/publications/papers/CMU-ISR-04-136.pdf
33.
Box
,
G. E. P.
, and
Behnken
,
D. W.
,
1960
, “
Some New Three Level Designs for the Study of Quantitative Variables
,”
Technometrics
,
2
(
4
), pp.
455
475
. 10.1080/00401706.1960.10489912
34.
Vafaei
,
S.
,
Rahnejat
,
H.
, and
Aini
,
R.
,
2002
, “
Vibration Monitoring of High Speed Spindles Using Spectral Analysis Techniques
,”
Int. J. Mach. Tools Manuf.
,
42
(
11
), pp.
1223
1234
. 10.1016/S0890-6955(02)00049-4
35.
Orhan
,
S.
,
Aktürk
,
N.
, and
Çelik
,
V.
,
2006
, “
Vibration Monitoring for Defect Diagnosis of Rolling Element Bearings as a Predictive Maintenance Tool: Comprehensive Case Studies
,”
NDT E Int.
,
39
(
4
), pp.
293
298
. 10.1016/j.ndteint.2005.08.008
You do not currently have access to this content.