Active microwave thermography (AMT) is an integrated nondestructive testing (NDT) technique that utilizes a microwave-based thermal excitation and subsequent thermal measurement. AMT has shown potential for applications in the transportation, infrastructure, and aerospace industries. This paper investigates the potential of AMT for detection of defects referred to as flat-bottom holes (FBHs) in composites with high electrical conductivity such as carbon fiber-based composites. Specifically, FBHs of different dimensions machined in a carbon fiber reinforced polymer (CFRP) composite sheet are considered. Simulation and measurement results illustrate the potential for AMT as a NDT tool for inspection of CFRP structures. In addition, a dimensional analysis of detectable defects is provided including a radius-to-depth ratio threshold for successful detection.

References

1.
Zoughi
,
R.
,
2000
,
Microwave Non-Destructive Testing and Evaluation Principles
, Vol.
4
,
Kluwer
,
Dordrecht, The Netherlands
.
2.
Mirala
,
A.
, and
Sarraf Shirazi
,
R.
,
2017
, “
Detection of Surface Cracks in Metals Using Time-Domain Microwave Non-Destructive Testing Technique
,”
IET Microw. Antennas Propag.
,
11
(
4
), pp.
564
569
.
3.
Ricci
,
M.
,
Senni
,
L.
, and
Burrascano
,
P.
,
2012
, “
Exploiting Pseudorandom Sequences to Enhance Noise Immunity for Air-Coupled Ultrasonic Nondestructive Testing
,”
IEEE Trans. Instrum. Meas.
,
61
(
11
), pp.
2905
2915
.
4.
Abou-Khousa
,
M. A.
,
Ryley
,
A.
,
Kharkovsky
,
S.
,
Zoughi
,
R.
,
Daniels
,
D.
,
Kreitinger
,
N.
, and
Steffes
,
G.
,
2006
, “
Comparison of X-Ray, Millimeter Wave, Shearography and Through-Transmission Ultrasonic Methods for Inspection of Honeycomb Composites
,”
Proc. Rev. Prog. Quant. Nondestr. Eval.
,
11
(
26B
), pp.
999
1006
.
5.
Ibarra-Castanedo
,
C.
, and
Maldague
,
X.
,
2013
, “
Infrared Thermography
,”
Handbook of Technical Diagnostics
,
Springer-Verlag
,
Berlin, Heidelberg, Germany
, pp.
175
220
.
6.
Poudel
,
A.
,
Mitchell
,
K. R.
,
Chu
,
T. P.
,
Neidigk
,
S.
, and
Jacques
,
C.
,
2016
, “
Non-Destructive Evaluation of Composite Repairs by Using Infrared Thermography
,”
J. Compos. Mater.
,
50
(
3
), pp.
351
363
.
7.
Yang
,
R.
, and
He
,
Y.
,
2016
, “
Optically and Non-Optically Excited Thermography for Composites: A Review
,”
Infrared Phys. Technol.
,
75
, pp.
26
50
.
8.
Balageas
,
D.
, and
Levesque
,
P.
,
2002
, “
Mines Detection Using the EMIR Method
,”
Proc. QIRT
, pp.
71
78
.
9.
DiMarzio
,
C. A.
,
Rappaport
,
C. M.
,
Li
,
W.
,
Kilmer
,
M. E.
, and
Sauermann
,
G. O.
,
1999
, “
Microwave-Enhanced Infrared Thermography
,”
Proc. SPIE
,
3534
, pp.
337
342
.
10.
Keo
,
S.
,
Defer
,
D.
,
Breaban
,
F.
, and
Brachelet
,
F.
,
2013
, “
Comparison Between Microwave Infrared Thermography and CO2 Laser Infrared Thermography in Defect Detection in Applications With CFRP
,”
Mater. Sci. Appl.
,
4
(
10
), pp.
600
605
.
11.
Foudazi
,
A.
,
Ghasr
,
M. T.
, and
Donnell
,
K. M.
,
2015
, “
Characterization of Corroded Reinforced Steel Bars by Active Microwave Thermography
,”
IEEE Trans. Instrum. Meas.
,
64
(
9
), pp.
2583
2585
.
12.
Foudazi
,
A.
,
Mehdipour
,
I.
,
Donnell
,
K. M.
, and
Khayat
,
K. H.
,
2016
, “
Evaluation of Steel Fiber Distribution in Cement-Based Mortars Using Active Microwave Thermography
,”
Mater. Struct.
,
49
(
12
), pp.
5051
5065
.
13.
Foudazi
,
A.
,
Edwards
,
C. A.
,
Ghasr
,
M. T.
, and
Donnell
,
K. M.
,
2016
, “
Active Microwave Thermography for Defect Detection of CFRP-Strengthened Cement-Based Materials
,”
IEEE Trans. Instrum. Meas.
,
65
(
11
), pp.
2612
2620
.
14.
Foudazi
,
A.
,
Ghasr
,
M. T.
, and
Donnell
,
K. M.
,
2014
, “
Application of Active Microwave Thermography to Inspection of Carbon Fiber Reinforced Composites
,”
IEEE AUTOTEST
, St. Louis, MO, Sept. 15–18, pp.
318
322
.
15.
Foudazi
,
A.
,
Donnell
,
K. M.
, and
Ghasr
,
M. T.
,
2014
, “
Application of Active Microwave Thermography to Delamination Detection
,”
IEEE International Instrumentation and Measurement Technology Conference
(
I2MTC
), Montevideo, Uruguay, May 12–15, pp.
1567
1571
.
16.
Beemer
,
M. F.
, and
Shepard
,
S. M.
,
2017
, “
Aspect Ratio Considerations for Flat Bottom Hole Defects in Active Thermography
,”
Quant. InfraRed Thermography J.
,
15
(1), pp.
1
16
.
17.
Paul
,
C. R.
,
2006
,
Introduction to Electromagnetic Compatibility
, 2nd ed.,
Wiley
,
New York
, Chap. 10.
18.
Lienhard
, IV
,
J. H.
, and
Lienhard
,
V. J. H.
,
2017
,
A Heat Transfer Textbook
, 4th ed.,
Philogiston
,
Cambridge, MA
.
19.
Tian
,
T.
,
2011
, “
Anisotropic Thermal Property Measurement of Carbon-Fiber/Epoxy Composite Materials
,”
Ph.D. dissertation
, Dept. Mech. & Mater. Eng., Univ. Nebraska-Lincoln, Lincoln, NE.https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1028&context=mechengdiss
20.
Turi
,
E. A.
,
1997
,
Thermal Characterization of Polymetric Materials
, 2nd ed.,
Academic Press
,
San Diego, CA
.
21.
Pletcher
,
R. H.
,
Tannehill
,
J. C.
, and
Anderson
,
D. A.
,
2012
,
Computational Fluid Mechanics and Heat Transfer
, 3rd ed.,
CRC Press
,
Boca Raton, FL
.
22.
OSHA, 1970, “
Occupational Safety and Health Administration (OSHA) Nonionizing Radiation Regulations
,” Occupational Safety and Health Administration, Washington, DC, accessed July 09, 2018, https://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=STANDARDS&p_id=9745
23.
Meola
,
C.
, and
Carlomagno
,
G. M.
,
2004
, “
Recent Advances in the Use of Infrared Thermography
,”
Meas. Sci. Technol.
,
15
(
9
), pp.
27
58
.
You do not currently have access to this content.