Structural health monitoring (SHM) methods based on the cumulative second harmonic Lamb waves show attractive advantages. An ideal nonlinear parameter should allow precise characterization of the cumulative effects of the distributed nonlinear sources such as the material nonlinearity of a plate (MNP), in the presence of other unavoidable localized nonlinear components. While highlighting the deficiencies of the traditional nonlinear parameter (TNP) in the nonplanar cases, a refined nonlinear parameter (RNP) is proposed. Through compensations for the wave attenuation associated with the wave divergence, the new parameter entails a better characterization and differentiation of the cumulative MNP and other noncumulative localized nonlinear sources. Theoretical findings are ascertained by both finite element (FE) simulations and experiments, through tactically adjusting the dominance level of different nonlinear sources in the system. Results confirm the appealing features of the proposed RNP for SHM applications.

References

1.
Raghavan
,
A.
, and
Cesnik
,
C. E. S.
,
2007
, “
Review of Guided-Wave Structural Health Monitoring
,”
Shock Vib. Dig.
,
39
(
2
), pp.
91
116
.
2.
Su
,
Z.
,
Ye
,
L.
, and
Lu
,
Y.
,
2006
, “
Guided Lamb Waves for Identification of Damage in Composite Structures: A Review
,”
J. Sound Vib.
,
295
(
3–5
), pp.
753
780
.
3.
Yadav
,
S. K.
,
Banerjee
,
S.
, and
Kundu
,
T.
,
2013
, “
On Sequencing the Feature Extraction Techniques for Online Damage Characterization
,”
J. Int. Mater. Syst. Struct.
,
24
(
4
), pp.
473
483
.
4.
Chillara
,
V. K.
, and
Lissenden
,
C. J.
,
2016
, “
Review of Nonlinear Ultrasonic Guided Wave Nondestructive Evaluation: Theory, Numerics, and Experiments
,”
Opt. Eng.
,
55
(
1
), p.
011002
.
5.
Matlack
,
K. H.
,
Kim
,
J. Y.
,
Jacobs
,
L. J.
, and
Qu
,
J.
,
2015
, “
Review of Second Harmonic Generation Measurement Techniques for Material State Determination in Metals
,”
J. Nondestr. Eval.
,
34
(
1
), pp.
1
23
.
6.
Muller
,
M.
,
Sutin
,
A.
,
Guyer
,
R.
,
Talmant
,
M.
,
Laugier
,
P.
, and
Johnson
,
P. A.
,
2005
, “
Nonlinear Resonant Ultrasound Spectroscopy (NRUS) Applied to Damage Assessment in Bone
,”
J. Acoust. Soc. Am.
,
118
(
6
), pp.
3946
3952
.
7.
Van Den Abeele
,
K. E.
,
Sutin
,
A.
,
Carmeliet
,
J.
, and
Johnson
,
P. A.
,
2001
, “
Micro-Damage Diagnostics Using Nonlinear Elastic Wave Spectroscopy (NEWS)
,”
NDT&E Int.
,
34
(
4
), pp.
239
248
.
8.
Liu
,
P.
,
Sohn
,
H.
,
Kundu
,
T.
, and
Yang
,
S.
,
2014
, “
Noncontact Detection of Fatigue Cracks by Laser Nonlinear Wave Modulation Spectroscopy (LNWMS)
,”
NDT&E Int.
,
66
, pp.
106
116
.
9.
Cantrell
,
J. H.
, and
Yost
,
W. T.
,
2001
, “
Nonlinear Ultrasonic Characterization of Fatigue Microstructures
,”
Int. J. Fatigue
,
23
(
Suppl. 1
), pp.
487
490
.
10.
Chillara
,
K. V.
, and
Lissenden
,
C. J.
,
2012
, “
Interaction of Guided Wave Modes in Isotropic Weakly Nonlinear Elastic Plates: Higher Harmonic Generation
,”
J. Appl. Phys.
,
111
(
12
), p.
124909
.
11.
Deng
,
M.
,
1999
, “
Cumulative Second-Harmonic Generation of Lamb-Mode Propagation in a Solid Plate
,”
J. Appl. Phys.
,
85
(
6
), pp.
3051
3058
.
12.
Deng
,
M.
,
2003
, “
Analysis of Second-Harmonic Generation of Lamb Modes Using a Modal Analysis Approach
,”
J. Appl. Phys.
,
94
(
6
), pp.
4152
4159
.
13.
Srivastava
,
A.
, and
Di Scalea
,
F. L.
,
2009
, “
On the Existence of Antisymmetric or Symmetric Lamb Waves at Nonlinear Higher Harmonics
,”
J. Sound Vib.
,
323
(
3
), pp.
932
943
.
14.
Matsuda
,
N.
, and
Biwa
,
S.
,
2011
, “
Phase and Group Velocity Matching for Cumulative Harmonic Generation in Lamb Waves
,”
J. Appl. Phys.
,
109
(
9
), p.
094903
.
15.
Liu
,
Y.
,
Chillara
,
V. K.
, and
Lissenden
,
C. J.
,
2013
, “
On Selection of Primary Modes for Generation of Strong Internally Resonant Second Harmonics in Plate
,”
J. Sound Vib.
,
332
(
19
), pp.
4517
4528
.
16.
Wan
,
X.
,
Tse
,
P. W.
,
Xu
,
G. H.
,
Tao
,
T. F.
, and
Zhang
,
Q.
,
2016
, “
Analytical and Numerical Studies of Approximate Phase Velocity Matching Based Nonlinear S0 Mode Lamb Waves for the Detection of Evenly Distributed Microstructural Changes
,”
Smart Mater. Struct.
,
25
(
4
), p.
045023
.
17.
Zuo
,
P.
,
Zhou
,
Y.
, and
Fan
,
Z.
,
2016
, “
Numerical and Experimental Investigation of Nonlinear Ultrasonic Lamb Waves at Low Frequency
,”
Appl. Phys. Lett.
,
109
(
2
), p.
021902
.
18.
Shan
,
S.
,
Cheng
,
L.
, and
Li
,
P.
,
2016
, “
Adhesive Nonlinearity in Lamb-Wave-Based Structural Health Monitoring Systems
,”
Smart Mater. Struct.
,
26
(
2
), p.
025019
.
19.
Pruell
,
C.
,
Kim
,
J. Y.
,
Qu
,
J.
, and
Jacobs
,
L. J.
,
2007
, “
Evaluation of Plasticity Driven Material Damage Using Lamb Waves
,”
Appl. Phys. Lett.
,
91
(
23
), p.
231911
.
20.
Deng
,
M.
,
Wang
,
P.
, and
Lv
,
X.
,
2005
, “
Experimental Observation of Cumulative Second-Harmonic Generation of Lamb-Wave Propagation in an Elastic Plate
,”
J. Appl. Phys.
,
38
(
2
), p.
344
.
21.
Hong
,
M.
,
Mao
,
Z.
,
Todd
,
M. D.
, and
Su
,
Z.
,
2017
, “
Uncertainty Quantification for Acoustic Nonlinearity Parameter in Lamb Wave-Based Prediction of Barely Visible Impact Damage in Composites
,”
Mech. Syst. Signal Process.
,
82
, pp.
448
460
.
22.
Xiang
,
Y.
,
Zhu
,
W.
,
Deng
,
M.
,
Xuan
,
F. Z.
, and
Liu
,
C. J.
,
2016
, “
Generation of Cumulative Second-Harmonic Ultrasonic Guided Waves With Group Velocity Mismatching: Numerical Analysis and Experimental Validation
,”
Europhys. Lett.
,
116
(
3
), p.
34001
.
23.
Xiang
,
Y.
,
Deng
,
M.
,
Liu
,
C. J.
, and
Xuan
,
F. Z.
,
2015
, “
Contribution of Mixed Dislocations to the Acoustic Nonlinearity in Plastically Deformed Materials
,”
J. Appl. Phys.
,
117
(
21
), p.
214903
.
24.
Pruell
,
C.
,
Kim
,
J. Y.
,
Qu
,
J.
, and
Jacobs
,
L. J.
,
2009
, “
Evaluation of Fatigue Damage Using Nonlinear Guided Waves
,”
Smart Mater. Struct.
,
18
(
3
), p.
035003
.
25.
Kim
,
J.
,
Song
,
D. G.
, and
Jhang
,
K. Y.
,
2017
, “
A Method to Estimate the Absolute Ultrasonic Nonlinearity Parameter From Relative Measurement
,”
Ultrasonics
,
77
, pp.
197
202
.
26.
Konstantinidis
,
G.
,
Drinkwater
,
B. W.
, and
Wilcox
,
P. D.
,
2006
, “
The Temperature Stability of Guided Wave Structural Health Monitoring Systems
,”
Smart Mater. Struct.
,
15
(
4
), pp.
967
976
.
27.
Satyarnarayan
,
L.
,
Chandrasekaran
,
J.
,
Maxfield
,
B.
, and
Balasubramaniam
,
K.
,
2008
, “
Circumferential Higher Order Guided Wave Modes for the Detection and Sizing of Cracks and Pinholes in Pipe Support Regions
,”
NDT&E Int.
,
41
(
1
), pp.
32
43
.
28.
Shan
,
S.
,
Qiu
,
J.
,
Zhang
,
C.
,
Ji
,
H.
, and
Cheng
,
L.
,
2016
, “
Multi-Damage Localization on Large Complex Structures Through an Extended Delay-and-Sum Based Method
,”
Struct. Health Monit.
,
15
(
1
), pp.
50
64
.
29.
Liu
,
M.
,
Kim
,
J.-Y.
,
Jacobs
,
L.
, and
Qu
,
J.
,
2011
, “
Experimental Study of Nonlinear Rayleigh Wave Propagation in Shot-Peened Aluminum Plates—Feasibility of Measuring Residual Stress
,”
NDT&E Int.
,
44
(
1
), pp.
67
74
.
You do not currently have access to this content.