A cracked structure made of two different elastic materials having a Griffith crack at the interface is analyzed when it is subjected to pure shear loading and ultrasonic loading. The waves generated by the applied load and the crack propagation resulted from the shear loading are investigated. Peri-ultrasound modeling tool is used for this analysis. A comparison between experimental results and numerical predictions shows a very good matching between the two. Furthermore, the increase in nonlinear ultrasonic response in presence of the interface crack could also be modeled by this technique. The computed results show that when the interface crack propagates, then it breaks the interface at one end of the crack and breaks the material with lower elastic modulus at the other end. The unique feature of this peridynamics-based modeling tool is that it gives a complete picture of the structural response when it is loaded—it shows how elastic waves propagate in the structure and are scattered by the crack, how the crack surfaces open up, and then how crack starts to propagate. Different modeling tools are not needed to model these various phenomena.

References

1.
Cao
,
H. C.
, and
Evans
,
A. G.
,
1989
, “
An Experimental Study of the Fracture Resistance of Bimaterial Interfaces
,”
Mech. Mater.
,
7
(
4
), pp.
295
304
.
2.
Hutchinson
,
J. W.
, and
Suo
,
Z.
,
1991
, “
Mixed Mode Cracking in Layered Materials
,”
Adv. Appl. Mech.
,
29
, pp.
63
191
.
3.
Ye
,
T.
,
Suo
,
Z.
, and
Evans
,
A. G.
,
1992
, “
Thin Film Cracking and the Roles of Substrate and Interface
,”
Int. J. Solids Struct.
,
29
(
21
), pp.
2639
2648
.
4.
Beuth
,
J. L.
,
1992
, “
Cracking of Thin Bonded Films in Residual Tension
,”
Int. J. Solids Struct.
,
29
(
13
), pp.
1657
1675
.
5.
Evans
,
A. G.
,
Rühle
,
M.
,
Dalgleish
,
B. J.
, and
Charalambides
,
P. G.
,
1990
, “
The Fracture Energy of Bimaterial Interfaces
,”
Mater. Sci. Eng., A
,
126
(
1–2
), pp.
53
64
.
6.
Shih
,
C. F.
, and
Asaro
,
R. J.
,
1988
, “
Elastic-Plastic Analysis of Cracks on Bimaterial Interfaces—Part I: Small Scale Yielding
,”
ASME J. Appl. Mech.
,
55
(
2
), pp.
299
316
.
7.
Stott
,
F. H.
,
1988
, “
Methods of Improving Adherence
,”
Mater. Sci. Technol.
,
4
(5), pp 431–438.
8.
Shih
,
C. F.
,
Asaro
,
R. J.
, and
O'Dowd
,
N. P.
,
1991
, “
Elastic-Plastic Analysis of Cracks on Bimaterial Interfaces—Part III: Large Scale Yielding
,”
ASME J. Appl. Mech.
,
58
(
2
), pp.
450
462
.
9.
Renshaw
,
C. E.
, and
Pollard
,
D. D.
,
1995
, “
An Experimentally Verified Criterion for Propagation Across Unbounded Frictional Interfaces in Brittle, Linear Elastic Materials
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
,
32
(
3
), pp.
237
249
.
10.
Hadi Hafezi
,
M.
,
Nik Abdullah
,
N.
,
Correia
,
J. F.
, and
De Jesus
,
A. M.
,
2012
, “
An Assessment of a Strain-Life Approach for Fatigue Crack Growth
,”
Int. J. Struct. Integr.
,
3
(
4
), pp.
344
376
.
11.
Achenbach
,
J. D.
,
Keer
,
L. M.
,
Khetan
,
R. P.
, and
Chen
,
S. H.
,
1979
, “
Loss of Adhesion at the Tip of an Interface Crack
,”
J. Elasticity
,
9
(
4
), pp.
397
424
.
12.
Knowles
,
J. K.
, and
Sternberg
,
E.
,
1983
, “
Large Deformations Near a Tip of an Interface-Crack Between Two Neo-Hookean Sheets
,”
J. Elasticity
,
13
(
3
), pp.
257
293
.
13.
Shih
,
C. F.
, and
Asaro
,
R. J.
,
1989
, “
Elastic-Plastic Analysis of Cracks on Bimaterial Interfaces: Part II: Structure of Small-Scale Yielding Fields
,”
ASME J. Appl. Mech.
,
56
(4), pp. 763–779.
14.
Chiang
,
F. P.
, and
Hua
,
L.
,
1992
, “
Measurement of Displacement Field Around an Interfacial Crack in a Bimaterial Sheet
,”
Eng. Fract. Mech.
,
41
(
6
), pp.
939
949
.
15.
Williams
,
M. L.
,
1959
, “
The Stresses Around a Fault or Crack in Dissimilar Media
,”
Bull. Seismol. Soc. Am.
,
49
(
2
), pp.
199
204
.
16.
Erdogan
,
F.
,
1963
, “
Stress Distribution in a Nonhomogeneous Elastic Plane With Cracks
,”
ASME J. Appl. Mech.
,
30
(
2
), pp.
232
236
.
17.
England
,
A. H.
,
1965
, “
A Crack Between Dissimilar Media
,”
ASME J. Appl. Mech.
,
32
(
2
), pp.
400
402
.
18.
Comninou
,
M.
,
1977
, “
The Interface Crack
,”
ASME J. Appl. Mech.
,
44
(
4
), pp.
631
636
.
19.
Silling
,
S. A.
,
2000
, “
Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces
,”
J. Mech. Phys. Solids
,
48
(
1
), pp.
175
209
.
20.
Silling
,
S. A.
, and
Lehoucq
,
R. B.
,
2010
, “
Peridynamic Theory of Solid Mechanics
,”
Adv. Appl. Mech.
,
44
, pp.
73
168
.
21.
Hafezi
,
M. H.
,
Alebrahim
,
R.
, and
Kundu
,
T.
,
2017
, “
Peri-Ultrasound for Modeling Linear and Nonlinear Ultrasonic Response
,”
Ultrasonics
,
80
, pp.
47
57
.
22.
Silling
,
S. A.
,
Epton
,
M.
,
Weckner
,
O.
,
Xu
,
J.
, and
Askari
,
E.
,
2007
, “
Peridynamic States and Constitutive Modeling
,”
J. Elasticity
,
88
(2), pp. 151–184.
23.
Emmrich
,
E.
, and
Weckner
,
O.
,
2007
, “
Analysis and Numerical Approximation of an Integro-Differential Equation Modeling Non-Local Effects in Linear Elasticity
,”
Math. Mech. Solids
,
12
(
4
), pp.
363
384
.
24.
Shen
,
Y.
, and
Griugiutiu
,
V.
,
2014
, “
WaveFormRevealer: An Analytical Framework and Predictive Tool for the Simulation of Multi-Modal Guided Wave Propagation and Interaction With Damage
,”
Struct. Health Monit.—Int. J.
,
13
(
5
), pp.
491
511
.
25.
Arnau
,
A.
, ed.,
2004
,
Piezoelectric Transducers and Applications
, Vol.
2004
,
Springer
,
Berlin
.
26.
Uchino
,
K.
,
1997
,
Piezoelectric Actuators and Ultrasonic Motors
, Vol. 1, Kluwer Academic Publishers, Boston, MA.
27.
Eiras
,
J. N.
,
Kundu
,
T.
,
Bonilla
,
M.
, and
Payá
,
J.
,
2013
, “
Nondestructive Monitoring of Ageing of Alkali Resistant Glass Fiber Reinforced Cement (GRC)
,”
J. Nondestr. Eval.
,
32
(
3
), pp.
300
314
.
28.
Bermes
,
C.
,
Kim
,
J. Y.
,
Qu
,
J.
, and
Jacobs
,
L. J.
,
2008
, “
Nonlinear Lamb Waves for the Detection of Material Nonlinearity
,”
Mech. Syst. Signal Process.
,
22
(
3
), pp.
638
646
.
29.
Bermes
,
C.
,
Kim
,
J. Y.
,
Qu
,
J.
, and
Jacobs
,
L. J.
,
2007
, “
Experimental Characterization of Material Nonlinearity Using Lamb Waves
,”
Appl. Phys. Lett.
,
90
(
2
), p.
021901
.
30.
Pruell
,
C.
,
Kim
,
J. Y.
,
Qu
,
J.
, and
Jacobs
,
L. J.
,
2007
, “
Evaluation of Plasticity Driven Material Damage Using Lamb Waves
,”
Appl. Phys. Lett.
,
91
(
23
), p.
231911
.
31.
Shui
,
G.
,
Kim
,
J. Y.
,
Qu
,
J.
,
Wang
,
Y. S.
, and
Jacobs
,
L. J.
,
2008
, “
A New Technique for Measuring the Acoustic Nonlinearity of Materials Using Rayleigh Waves
,”
NDT&E Int.
,
41
(
5
), pp.
326
329
.
32.
Lu
,
H.
, and
Chiang
,
F. P.
,
1991
, “
Photoelastic Study of Interfacial Fracture of Bimaterial
,”
Opt. Lasers Eng.
,
14
(3), pp. 217–234.
33.
Rice
,
J.
,
1988
, “
Elastic Fracture Mechanics Concepts for Interfacial Cracks
,”
ASME J. Appl. Mech.
,
55
(
1
), pp.
98
103
.
34.
Rice
,
J. R.
, and
Sih
,
G. C.
,
1965
, “
Plane Problems of Cracks in Dissimilar Media
,”
ASME J. Appl. Mech.
,
32
(2), pp. 418–423.
You do not currently have access to this content.