This paper illustrates the dynamic behavior of a doubly-clamped single walled boron nitride nanotube (SWBNNT) as a mass sensor. To this end, a 3-dimensional atomistic model based on molecular structural mechanics is developed such that the proximity of the model to the actual atomic structure of the nanotube is significantly retained. Different types of zigzag and armchair layouts of SWBNNTs are considered with doubly-clamped end constraints. Implementing the finite element simulation approach, the resonant frequency shift based analysis is performed for doubly-clamped end-constraints, for an additional nanoscale mass at the middle of the length, and at the intermediate landing position along the length of the nanotube. The effect of the intermediate landing position of added mass on the resonant frequency shift is analyzed by considering excitations of the fundamental modes of vibration. The finite element method (FEM) based simulation results are validated using the continuum mechanics based analytical results, considering the effective wall thickness of the SWBNNT. The present approach is found to be effectual in terms of dealing with different chiralities, boundary conditions, and the consideration of the added mass to analyze the dynamic behavior of the doubly-clamped SWBNNT based nanomechanical resonators.

References

1.
Oberlin
,
A.
,
Endo
,
M.
, and
Koyama
,
T.
,
1976
, “
Filamentous Growth of Carbon Through Benzene Decomposition
,”
J. Cryst. Growth
,
32
(
3
), pp.
335
349
.10.1016/0022-0248(76)90115-9
2.
Iijima
,
S.
,
1991
, “
Helical Microtubules of Graphitic Carbon
,”
Nature (London)
,
354
, pp.
56
58
.10.1038/354056a0
3.
Santosh
,
M.
,
Maiti
,
P. K.
, and
Sood
,
A. K.
,
2009
, “
Elastic Properties of Boron Nitride Nanotubes and Their Comparison With Carbon Nanotubes
,”
J. Nanosci. Nanotechnol.
,
9
(
9
), pp.
5425
5430
.10.1166/jnn.2009.1197
4.
Moon
,
W.
, and
Hwang
,
H.
,
2004
, “
Molecular Mechanics of Structural Properties of Boron Nitride Nanotubes
,”
Physica E (Amsterdam)
,
23
(
1–2
), pp.
26
30
.10.1016/j.physe.2003.11.273
5.
Pokropivny
,
V.
,
Kovrygin
,
S.
,
Gubanov
,
V.
,
Lohmus
,
R.
,
Lohmus
,
A.
, and
Vesi
,
U.
,
2008
, “
Ab-Initio Calculation of Raman Spectra of Single Walled BN Nanotubes
,”
Physica E (Amsterdam)
,
40
(
7
), pp.
2339
2342
.10.1016/j.physe.2008.01.013
6.
Verma
,
V.
,
Jindal
,
V. K.
, and
Dharamvir
,
K.
,
2007
, “
Elastic Moduli of a Boron Nitride Nanotube
,”
Nanotechnology
,
18
(
43
), p.
435711
.10.1088/0957-4484/18/43/435711
7.
Li
,
C.
, and
Chou
,
T.
,
2006
, “
Static and Dynamic Properties of Single Walled Boron Nitride Nanotubes
,”
J. Nanosci. Nanotechnol.
,
6
(
1
), pp.
54
60
.
8.
Jeon
,
G. S.
, and
Mahan
,
G. D.
,
2009
, “
Lattice Vibrations of a Single-Wall Boron Nitride Nanotube
,”
Phys. Rev. B
,
79
(
8
), p.
085424
.10.1103/PhysRevB.79.085424
9.
Ghassemi
,
H. M.
, and
Yassar
,
R. S.
,
2010
, “
On the Mechanical Behavior of Boron Nitride Nanotubes
,”
ASME Appl. Mech. Rev.
,
63
(
2
), p.
020804
.10.1115/1.4001117
10.
Suryavanshi
,
A.
,
Yu
,
M.
,
Wen
,
J.
,
Tang
,
C.
, and
Bando
,
Y.
,
2004
, “
Elastic Modulus and Resonance Behavior of Boron Nitride Nanotubes
,”
Appl. Phys. Lett.
,
84
(
14
), pp.
2527
2529
.10.1063/1.1691189
11.
Chopra
,
N. G.
, and
Zettl
,
A.
,
1998
, “
Measurement of the Elastic Modulus of a Multi Wall Boron Nitride Nanotube
,”
Solid State Commun.
,
105
(
5
), pp.
297
300
.10.1016/S0038-1098(97)10125-9
12.
Zhi
,
C. Y.
,
Bando
,
Y.
,
Tang
,
C. C.
,
Huang
,
Q.
, and
Golberg
,
D.
,
2008
, “
Boron Nitride Nanotube: Functionalization and Composites
,”
J. Mater. Chem.
,
18
(
33
), pp.
3900
3908
.10.1039/b804575e
13.
Ciofani
,
G.
,
Raffa
,
V.
,
Menciassi
,
A.
, and
Cuschieri
,
A.
,
2009
, “
Boron Nitride Nanotubes: An Innovative Tool for Nanomedicine
,”
Nanotoday
,
4
(
1
), pp.
8
10
.10.1016/j.nantod.2008.09.001
14.
Oh
,
E. S.
,
2010
, “
Elastic Properties of Boron Nitride Nanotubes Through the Continuum Lattice Approach
,”
Mater. Lett.
,
64
(
7
), pp.
859
862
.10.1016/j.matlet.2010.01.041
15.
Zhi
,
C.
,
Bando
,
Y.
,
Tang
,
C.
, and
Golberg
,
D.
,
2005
, “
Immobilization of Proteins on Boron Nitride Nanotubes
,”
J. Am. Chem. Soc.
,
127
(
49
), pp.
17144
17145
.10.1021/ja055989+
16.
Akdim
,
B.
,
Pachter
,
R.
,
Duan
,
X.
, and
Adams
,
W. W.
,
2003
, “
Comparative Theoretical Study of Single-Wall Carbon and Boron-Nitride Nanotubes
,”
Phys. Rev. B
,
67
, p.
245404
.10.1103/PhysRevB.67.245404
17.
Goldberg
,
D.
,
Bando
,
Y.
,
Tang
,
C.
, and
Zhi
,
C.
,
2007
, “
Boron Nitride Nanotubes
,”
Adv. Mater.
,
19
, pp.
2413
2432
.10.1002/adma.200700179
18.
Chowdhury
,
R.
,
Wang
,
C. Y.
,
Adhikari
,
S.
, and
Scarpa
,
F.
,
2010
, “
Vibration and Symmetry-Breaking of Boron Nitride Nanotubes
,”
Nanotechnology
,
21
, p.
365702
.10.1088/0957-4484/21/36/365702
19.
Boldrin
,
L.
,
Scarpa
,
F.
,
Chowdhury
,
R.
, and
Adhikari
,
S.
,
2011
, “
Effective Mechanical Properties of Hexagonal Boron Nitride Nanosheets
,”
Nanotechnology
,
22
, p.
505702
.10.1088/0957-4484/22/50/505702
20.
Chowdhury
,
R.
, and
Adhikari
,
S.
,
2011
, “
Boron Nitride Nanotubes as Zeptogram Scale Biosensors: Theoretical Investigations
,”
IEEE Trans. Nanotechnol.
,
10
(
4
), pp.
659
667
.10.1109/TNANO.2010.2060492
21.
Jiang
,
L.
, and
Guo
,
W.
,
2011
, “
A Molecular Mechanics Study on Size-Dependent Elastic Properties of Single-Walled Boron Nitride Nanotubes
,”
J. Mech. Phys. Solids
,
59
, pp.
1204
1213
.10.1016/j.jmps.2011.03.008
22.
Timoshenko
,
S. P.
, and
Gere
,
J. M.
,
1961
,
Theory of Elastic Stability
,
McGraw-Hill
,
New York
.
23.
Allinger
,
N. L.
,
1977
, “
Conformational Analysis. 130 MM2. A Hydrocarbon Force Field Utilizing V1 and V2 Torsional Terms
,”
J Am. Chem. Soc.
,
99
(
25
), pp.
8127
8134
.10.1021/ja00467a001
24.
Odegard
,
G. M.
,
Gates
,
T. S.
,
Nicholson
,
L. M.
, and
Wise
,
K. E.
,
2002
, “
Equivalent-Continuum Modeling of Nano-Structured Materials
,”
Compos. Sci. Technol.
,
62
, pp.
1869
1880
.10.1016/S0266-3538(02)00113-6
25.
Rappe
,
A. K.
, and
Goddard
,
W. A.
, III
,
1991
, “
Charge Equilibrium for Molecular Dynamics Simulations
,”
J. Phys. Chem.
,
95
, pp.
3358
3363
.10.1021/j100161a070
26.
Rappe
,
A. K.
,
Casewit
,
C. J.
,
Cowell
,
K. S.
,
Goddard
,
W. A.
, III
, and
Skiff
,
W. M.
,
1992
, “
UFF, a Full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations
,”
J. Am. Chem. Soc.
,
114
(
25
), pp.
10024
10035
.10.1021/ja00051a040
27.
Menon
,
M.
, and
Srivastava
,
D.
,
1998
, “
Structure of Boron Nitride Nanotubes: Tube Closing Versus Chirality
,”
Computational Nanotechnology at NAS Systems Division, NASA Ames Research Center
.
28.
Panchal
,
M. B.
,
Upadhyay
,
S. H.
, and
Harsha
,
S. P.
,
2012
, “
Mass Detection Using Single Walled Boron Nitride Nanotube as a Nanomechanical Resonator
,”
NANO
,
7
(
4
), p.
1250029
.10.1142/S1793292012500294
29.
Panchal
,
M. B.
,
Upadhyay
,
S. H.
, and
Harsha
,
S. P.
,
2013
, “
Vibrational Analysis of Boron Nitride Nanotube Based Nanoresonators
,”
ASME J. Nanotech. Eng. Med.
,
3
(
3
), p.
031004
.10.1115/1.4007696
30.
Madelung
,
O.
,
1991
, “
Data in Science and Technology
,”
R.
Poerschke
, ed,
Springer-Verlag
,
Berlin
, p.
164
.
31.
Knobel
,
R. G.
,
2008
, “
Mass Sensors: Weighing Single Atoms With a Nanotube
,”
Nat. Nanotechnol.
,
3
, pp.
525
526
.10.1038/nnano.2008.250
32.
Dohn
,
S.
,
Svendsen
,
W.
, and
Boisen
,
A.
,
2007
, “
Mass and Position Determination of Attached Particles on Cantilevered Based Mass Sensors
,”
Rev. Sci. Instrum.
,
78
, p.
103303
.10.1063/1.2804074
You do not currently have access to this content.