Power supply is an important aspect of micronanobiomedical devices. Implantable devices are required to stay inside of the body for longer period of time to provide continuous monitoring, detection, and therapeutics. The constricted areas of the human body, accessed by these devices, imply that the power source should not increase the payload significantly. Conventional on-board power sources are big, as compared with the device themselves, or involve wire-outs. Both provisions are liable to develop complications for sensor/actuator implant packaging. A plausible approach can be innovative solutions for sustainable bio-energy harvesting. Research studies have reported feasibility of miniature power sources, running on redox reactions. The device design, reported in this study, is a combination of nano-engineered composites and flexible thin film processing to achieve high density packaging. Of which, the end goal is production of energy for sensor applications. Both the bio-electrodes were successfully functionalized by amide bond cross-linkage between the carbon nanotube surface and the enzyme molecules: catalase and glucose oxidase for cathode and anode, respectively. The nanocomposite based biopower cell was evaluated as a steady power supply across the physiological range of glucose concentration. The power cell was able to deliver a steady power of 3.2 nW at 85 mV for glucose concentrations between 3 mM and 8 mM. Electron microscopy scanning of the functionalized electrode surface and spectroscopic evaluation of nanotube surface were used for evaluation of the biofunctionalization technique. Cyclic voltametric (CV) scans were performed on the cathodic and anodic half cells to corroborate bioactivity and qualitatively evaluate the power cell output against the redox peaks on the CV scans. The importance of these results has been discussed and conclusions have been drawn pertaining to further miniaturization (scale down) of the cell.

1.
Parsonnet
,
V.
, 1972, “
Power Sources for Implantable Cardiac Pacemakers
,”
Chest
0012-3692,
61
, pp.
165
173
.
2.
Ivorra
,
A.
,
Aguillo
,
J.
,
Villa
,
R.
,
Millan
,
J.
,
Bausells
,
J.
,
Errachid
,
A.
,
Godignon
,
P.
,
Benvenuto
,
A.
,
Beccai
,
L.
,
Valvo
,
F.
,
Menciassi
,
A.
,
Dario
,
P.
, and
Carrozza
,
M. C.
, 2000, “
Multisensor Silicon Needle for Cardiac Applications
,”
First Annual International IEEE-EMBS Special Topics Conference on Microtechnologies in Medicine and Biology
, Lyon, France, pp.
216
219
.
3.
Toumazou
,
C.
, and
Cass
,
T.
, 2007, “
Cell-Bionics: Tools for Real-Time Sensor Processing
,”
Philos. Trans. R. Soc. London, Ser. B
0962-8436,
362
, pp.
1321
1328
.
4.
Ziaie
,
K. N.
, 2001, “
An Implantable Microsystem for Tonometric Blood Pressure Measurement
,”
Biomed. Microdevices
1387-2176,
3
, pp.
285
292
.
5.
Yeager
,
D. J.
,
Holleman
,
J.
,
Prasad
,
R.
,
Smith
,
J. R.
, and
Otis
,
B. P.
, 2009, “
NeuralWISP: A Wirelessly Powered Neural Interface With 1-m Range
,”
IEEE Trans. Biomed. Circuits and Sys.
,
3
(
6
), pp.
379
387
.
6.
Yoon
,
H.
,
Hankins
,
P. T.
,
Varadan
,
V. K.
, and
Harbaugh
,
R. E.
, 2008, “
Dual Electrode Ensembles With Core and Shell Nanoelectrodes for Dopamine Sensing Applications
,”
Electroanalysis
1040-0397,
20
(
10
), pp.
1147
1150
.
7.
Ginggen
,
A.
,
Tardy
,
Y.
,
Crivelli
,
R.
,
Bork
,
T.
, and
Renaud
,
P.
, 2008, “
A Telemetric Pressure Sensor System for Biomedical Applications
,”
IEEE Trans. Biomed. Eng.
0018-9294,
55
(
4
), pp.
1374
1381
.
8.
Schlierf
,
R.
,
Horst
,
U.
,
Ruhl
,
M.
,
Schmitz-Rode
,
T.
,
Mokwa
,
W.
, and
Schnakenberg
,
U.
, 2007, “
A Fast Telemetric Pressure and Temperature Sensor System for Medical Applications
,”
J. Micromech. Microeng.
0960-1317,
17
, pp.
S98
S102
.
9.
Bazzu
,
G.
,
Puggioni
,
G. G. M.
,
Dedola
,
S.
,
Calia
,
G.
,
Rocchitta
,
G.
,
Migheli
,
R.
,
Desole
,
M. S.
,
Lowry
,
J. P.
,
O’Neill
,
R. D.
, and
Serra
,
P. A.
, 2009, “
Real-Time Monitoring of Brain Tissue Oxygen Using a Miniaturized Biotelemetric Device Implanted in Freely Moving Rats
,”
Anal. Chem.
0003-2700,
81
, pp.
2235
2241
.
10.
Calia
,
G.
,
Rocchitta
,
G.
,
Migheli
,
R.
,
Puggioni
,
G.
,
Spissu
,
Y.
,
Bazzu
,
G.
,
Mazzarello
,
V.
,
Lowry
,
J. P.
,
O’Neill
,
R. D.
,
Desole
,
M. S.
, and
Serra
,
P. A.
, 2009, “
Biotelemetric Monitoring of Brain Neurochemistry in Conscious Rats Using Microsensors and Biosensors
,”
Sensors
0746-9462,
9
, pp.
2511
2523
.
11.
Mohri
,
S.
,
Shimizu
,
J.
,
Goda
,
N.
,
Miyasaka
,
T.
,
Fujita
,
A.
,
Nakamura
,
M.
, and
Kajiya
,
F.
, 2006, “
Measurement of CO2, Lactic Acid and Sodium Bicarbonate Secreted by Cultured Cells Using Flow-Through Type pH/CO2 Sensor System Based ISFET
,”
Sens. Actuators B
0925-4005,
115
, pp.
519
525
.
12.
Premanode
,
B.
, and
Toumazou
,
C.
, 2007, “
A Novel, Low Power Biosensor for Real Time Monitoring of Creatinine and Urea in Peritoneal Dialysis
,”
Sens. Actuators B
0925-4005,
120
, pp.
732
735
.
13.
Credi
,
A.
, 2006, “
Artificial Nanomachines Based on Interlocked Molecules
,”
J. Phys.: Condens. Matter
0953-8984,
18
, pp.
S1779
S1795
.
14.
Shirai
,
Y.
,
Morin
,
J. F.
,
Sasaki
,
T.
,
Guerrero
,
J. M.
, and
Tour
,
J. M.
, 2006, “
Recent Progress on Nanovehicles
,”
Chem. Soc. Rev.
0306-0012,
35
, pp.
1043
1055
.
15.
Wang
,
Y.
,
Hernandez
,
R. M.
,
Bartlett
,
D. J.
,
Bingham
,
J. M.
,
Kline
,
T. R.
,
Sen
,
A.
, and
Mallouk
,
T. E.
, 2006, “
Bipolar Electrochemical Mechanism for the Propulsion of Catalytic Nanomotors in Hydrogen Peroxide Solutions
,”
Langmuir
0743-7463,
22
, pp.
10451
10456
.
16.
Freitas
,
R. A.
, 2005, “
Current Status of Nanomedicine and Medical Nanorobotics
,”
J. Comput. Theor. Nanosci.
1546-1955,
2
, pp.
1
25
.
17.
Cavalcanti
,
A.
,
Shirinzadeh
,
B.
,
Murphy
,
D.
, and
Smith
,
J. A.
, 2007, “
Nanorobots for Laparoscopic Cancenr Surgery
,”
IEEE ICIS 2007 International Conference on Computer and Information Science
, pp.
738
743
.
18.
Yang
,
C. H.
,
Chung
,
W. Y.
,
Lin
,
K. K.
,
Pijanowska
,
D. G.
, and
Torbicz
,
W.
, 2003, “
A Low-Power Telemetric System Design for ISFET-Based Sensor Array Applications
,”
Proceedings of the 16th European Conference on Circuit Theory and Design, ECCTD’03
, Vol.
1
, pp.
I
-260–I-
263
.
19.
Eggers
,
T.
,
Marschner
,
C.
,
Marschner
,
U.
,
Clasbrummel
,
B.
,
Laur
,
R.
, and
Binder
,
J.
, 2000, “
Advanced Hybrid Integrated Low-Power Telemetric Pressure Monitoring System for Biomedical Applications
,”
13th Annual International Conference on Microelectromechanical Systems
, Miyazaki, Japan, pp.
329
334
.
20.
Katz
,
E.
,
Filanovsky
,
B.
, and
Willner
,
I.
, 1999, “
A Biofuel Cell Based on Two Immiscible Solvents and Glucose Oxidase and Microperoxidase-11 Monolayer-Functionalized Electrodes
,”
New J. Chem.
1144-0546,
23
(
5
), pp.
481
487
.
21.
Tsujimura
,
S.
,
Kano
,
K.
, and
Ikeda
,
T.
, 2002, “
Glucose/O2 Biofuel Cell Operating at Physiological Conditions
,”
Electrochemistry (Tokyo, Jpn.)
1344-3542,
70
, pp.
940
942
.
22.
Mano
,
N.
,
Mao
,
F.
, and
Heller
,
A.
, 2003, “
Characteristics of a Miniature Compartment-Less Glucose-O2 Biofuel Cell and Its Operation in a Living Plant
,”
J. Am. Chem. Soc.
0002-7863,
125
, pp.
6588
6594
.
23.
Shin
,
M. K.
,
Park
,
S. J.
,
Yoon
,
S. G.
,
Lee
,
C. K.
,
Shin
,
S. R.
,
Shin
,
M. K.
,
Gu
,
B. K.
,
Kim
,
M. S.
, and
Kim
,
S. J.
, 2006, “
Redox Reactions of Bio Molecule for Nano-Bio Battery
,”
Mater. Res. Soc. Symp. Proc.
0272-9172,
915
, pp.
77
81
.
24.
Suckale
,
J.
, and
Solimena
,
M.
, 2008, “
Pancreas Islets in Metabolic Signaling-Focus on the β-Cell
,”
Front. Biosci.
1093-4715,
13
, pp.
7156
7171
.
26.
Law
,
R.
, and
Bukwirwa
,
H.
, 1999, “
The Physiology of Oxygen Delivery
,”
Physiology
,
10
, pp.
1
2
.
27.
Balasubramanian
,
K.
, and
Burghard
,
M.
, 2006, “
Biosensors Based on Carbon Nanotubes
,”
Anal. Bioanal. Chem.
1618-2642,
385
, pp.
452
468
.
28.
Pandey
,
P. C.
, and
Upadhyay
,
S.
, 2001, “
Biochemistry of Glucose Oxidase Immobilized on Ferrocene Encapsulated Ormosil Modified Electrode
,”
Sens. Actuators B
0925-4005,
76
, pp.
193
198
.
29.
Mano
,
N.
,
Mao
,
F.
, and
Heller
,
A.
, 2004, “
A Miniature Membrane-less Biofuel Cell Operating at +0.60 V Under Physiological Conditions
,”
ChemBioChem
1439-4227,
5
, pp.
1703
1705
.
30.
Qiu
,
J. D.
,
Deng
,
M. Q.
,
Liang
,
R. P.
, and
Xiong
,
M.
, 2008, “
Ferrocene-Modified Multiwalled Carbon Nanotubes as Building Block for Construction of Reagentless Enzyme-Based Biosensors
,”
Sens. Actuators B
0925-4005,
135
, pp.
181
187
.
31.
Deo
,
R. P.
,
Wang
,
J.
,
Block
,
I.
,
Mulchandani
,
A.
,
Joshi
,
K. A.
,
Trojanowicz
,
M.
,
Scholz
,
F.
,
Chen
,
W.
, and
Lin
,
Y.
, 2005, “
Determination of Organophosphate Perticides at a Carbon Nanotube/Organophosphorus Hydrolase Electrochemical Biosensor
,”
Anal. Chim. Acta
0003-2670,
530
, pp.
185
189
.
32.
Tsai
,
Y. C.
,
Li
,
S. C.
, and
Chen
,
J. M.
, 2005, “
Cast Thin Film Biosensor Design Based on a Nafion Backbone, a Multiwalled Carbon Nanotube Conduit, and a Glucose Oxidase Function
,”
Langmuir
0743-7463,
21
, pp.
3653
3658
.
33.
Yang
,
M.
,
Yang
,
Y.
,
Liu
,
Y.
,
Shen
,
G.
, and
Yu
,
R.
, 2006, “
Platinum Nanoparticles-Doped Sol-Gel/Carbon Nanotubes Composite Electrochemical Sensors and Biosensors
,”
Biosens. Bioelectron.
0956-5663,
21
, pp.
1125
1131
.
34.
Wang
,
J.
,
Deo
,
R. P.
, and
Musameh
,
M.
, 2003, “
Stable and Sensitive Electrochemical Detection of Phenolic Compounds at Carbon Nanotube Modified Glassy Carbon Electrodes
,”
Electroanalysis
1040-0397,
15
, pp.
1830
1834
.
35.
Luque
,
G. L.
,
Ferreyra
,
N. F.
, and
Rivas
,
G. A.
, 2006, “
Glucose Biosensor Based on the Use of a Carbon Nanotube Paste Electrode Modified With Metallic Particles
,”
Mikrochim. Acta
0026-3672,
152
, pp.
277
283
.
36.
Britto
,
P. J.
,
Santhanam
,
K. S. V.
, and
Ajayan
,
P. M.
, 1996, “
Carbon Nanotube Electrode for Oxidation of Dopamine
,”
Biochemistry and Bioenergetics
,
41
, pp.
121
125
.
37.
Lin
,
Y.
,
Lu
,
F.
,
Tu
,
Y.
, and
Ren
,
Z.
, 2004, “
Glucose Biosensors Based on Carbon Nanotube Nanoelectrode Ensembles
,”
Nano Lett.
1530-6984,
4
(
2
), pp.
191
195
.
38.
Xie
,
J.
,
Wang
,
S.
,
Aryasomayajula
,
L.
, and
Varadan
,
V. K.
, 2007, “
Platinum Decorated Carbon Nanotubes for Highly Sensitive Amperometric Glucose Sensing
,”
Nanotechnology
0957-4484,
18
, p.
065503
.
39.
Kang
,
C.
,
Shin
,
H.
, and
Heller
,
A.
, 2006, “
On the Stability of the “Wired” Bilirubin Oxidase Oxygen Cathode in Serum
,”
Bioelectrochemistry
1567-5394,
68
, pp.
22
26
.
40.
Timur
,
S.
,
Pazarloglu
,
N.
,
Pilloton
,
R.
, and
Telefoncu
,
A.
, 2004, “
Thick Film Sensors Based on Laccase From Different Sources Immobilized in Polyaniline Matrix
,”
Sens. Actuators B
0925-4005,
97
(
1
), pp.
132
136
.
41.
Lai
,
M. E.
, and
Bergel
,
A.
, 2000, “
Electrochemical Reduction of Oxygen on Glassy Carbon: Catalysis by Catalase
,”
J. Electroanal. Chem.
0022-0728,
494
, pp.
30
40
.
42.
Fischback
,
M. B.
,
Youn
,
J. K.
,
Zhao
,
X.
,
Wang
,
P.
,
Park
,
H. G.
,
Chang
,
H. N.
,
Kim
,
J.
, and
Ha
,
S.
, 2006, “
Miniature Biofuel Cells With Improved Stability Under Continuous Operation
,”
Electroanalysis
1040-0397,
18
, pp.
2016
2022
.
43.
Zeng
,
H.
,
Zhu
,
L.
,
Hao
,
G.
, and
Sheng
,
R.
, 1998, “
Synthesis of Various Form of Carbon Nanotubes by AC Arc Discharge
,”
Carbon
0008-6223,
36
(
3
), pp.
259
261
.
44.
Jiang
,
W.
,
Molian
,
P.
, and
Ferkel
,
H.
, 2005, “
Rapid Production of Carbon Nanotubes by High-Power Laser Ablation
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
127
, pp.
703
707
.
45.
Zhang
,
N.
,
Xie
,
J.
, and
Varadan
,
V. K.
, 2002, “
Functionalization of Carbon Nanotubes by Potassium Permanganate Assisted With Phase Transfer Catalyst
,”
Smart Mater. Struct.
0964-1726,
11
(
6
), pp.
962
965
.
46.
Yan
,
Y.
,
Su
,
L.
, and
Mao
,
L.
, 2007, “
Multi-Walled Carbon Nanotube-Based Glucose O2 Biofuel Cell With Glucose Oxidase and Laccase as Biocatalysts
,”
J. Nanosci. Nanotechnol.
1533-4880,
7
, pp.
1625
1630
.
47.
Cass
,
A. E. G.
,
Davis
,
G.
,
Francis
,
G. D.
,
Hill
,
H. A. O.
,
Aston
,
W. J.
,
Higgins
,
I. J.
,
Plotkin
,
E. V.
,
Scott
,
L. D. L.
, and
Turner
,
A. P. F.
, 1984, “
Ferrocene-Mediated Enzyme Electrode for Amperometric Determination of Glucose
,”
Anal. Chem.
0003-2700,
56
(
4
), pp.
667
671
.
48.
Gagne
,
R. R.
,
Koval
,
C. A.
, and
Lisensky
,
G. C.
, 1980, “
Ferrocene as an Internal Standard for Electrochemical Measurements
,”
Inorg. Chem.
0020-1669,
19
, pp.
2854
2855
.
49.
Schechter
,
B.
,
Caldwell
,
G.
, and
Neuse
,
E. W.
, 2000, “
A Preliminary Sturdy of the Toxicological Properties of Selected Polymer-Ferrocene Conjugates
,”
J. Inorg. Organomet. Polym.
1053-0495,
10
(
4
), pp.
177
188
.
You do not currently have access to this content.