The present investigation deals with finding the trajectories of the drug dosed magnetic carrier particle in a microvessel, which is subjected to the external magnetic field. We consider the physical model that was given in the work of Furlani and Furlani (2007, “A Model for Predicting Magnetic Targeting of Multifunctional Particles in the Microvasculature,” J. Magn. Magn. Mater., 312, pp. 187–193), but deviating by taking the non-Newtonian fluid model for the blood in the permeable microvessel. Both the Herschel–Bulkley fluid and Casson models are considered to analyze the present problem. The expression for the fluid velocity in the permeable microvessel is obtained using the analogy given by Decuzzi et al. (2006, “The Effective Dispersion of Nanovectors Within the Tumor Microvasculature,” Ann. Biomed. Eng., 34, pp. 633–641) first. Then the expression for the fluidic force for the carrier particle traversing in the non-Newtonian fluid is obtained. Several factors that influence the magnetic targeting of the carrier particles in the microvasculature, such as the permeability of the inner wall, size of the carrier particle, the volume fraction of embedded nanoparticles, and the diameter of the microvessel are considered in the present problem. The trajectories of the carrier particles are found in both invasive and noninvasive targeting systems. A comparison is made between the trajectories in these cases in both the Casson and Herschel–Bulkley fluid models. The present results for the permeable microvessel are compared with the impermeable inner wall trajectories given by Shaw et al. (2010, “Effect of Non-Newtonian Characteristics of Blood on Magnetic Targeting in the Impermeable Micro Vessel,” J. Magn. Magn. Mater., 322, pp. 1037–1043). Also, a prediction of the capture of therapeutic magnetic nanoparticle in the human permeable microvasculature is made for different radii and volume fractions in both the invasive and noninvasive cases.

1.
Frieboes
,
H. B.
,
Sinek
,
J. P.
,
Nalcioglu
,
O.
,
Fruehauf
,
J. P.
, and
Cristini
,
V.
, 2006,
Biological and Biomedical Nanotechnology
,
A. P.
Lee
and
L. J.
Lee
, eds.,
Springer
,
New York
, pp.
435
460
.
2.
Langer
,
R.
, 1998, “
Drug Delivery and Targeting
,”
Nature (London)
0028-0836,
392
, pp.
5
10
.
3.
Lübbe
,
A. S.
,
Alexiou
,
C.
, and
Bergemann
,
C.
, 2001, “
Clinical Applications of Magnetic Drug Targeting
,”
J. Surg. Res.
0022-4804,
95
, pp.
200
206
.
4.
Lübbe
,
A. S.
,
Bergeman
,
C.
,
Riess
,
J.
,
Schriever
,
F.
,
Reichardt
,
P.
,
Possinger
,
K.
,
Matthias
,
M.
,
Dörken
,
B.
,
Gürtler
,
R.
,
Hohenberger
,
P.
,
Haas
,
N.
,
Sohr
,
R.
,
Sander
,
B.
,
Lemke
,
A.-J.
,
Ohlendorf
,
D.
,
Huhnt
,
W.
, and
Huhn
,
D.
, 1996, “
Clinical Experiences With Magnetic Drug Targeting: A Phase I Study With 4′-Epidoxorubicin in 14 Patients With Advanced Solid Tumors
,”
Cancer Res.
0008-5472,
56
, pp.
4686
4693
.
5.
Ito
,
A.
,
Kuga
,
Y.
,
Honda
,
H.
,
Kikkawa
,
H.
,
Horiuchi
,
A.
,
Watanabe
,
Y.
, and
Kobayashi
,
T.
, 2004, “
Magnetite Nanoparticle Loaded Anti-HER2 Immunoliposomes for Combination of Antibody Therapy With Hyperthermia
,”
Cancer Lett.
0304-3835,
212
, pp.
167
175
.
6.
Iida
,
N.
, 1978, “
Influenced of Plasma Layer on Steady Blood Flow in Micro Vessel
,”
Jpn. J. Appl. Phys.
0021-4922,
17
(
1
), pp.
203
214
.
7.
Jain
,
R. K.
, 1988, “
Determinants of Tumor Flow: A Review
,”
Cancer Res.
0008-5472,
48
, pp.
2641
2658
.
8.
Prier
,
A. R.
,
Secomb
,
T. W.
, and
Gaehtgens
,
P.
, 2005, “
Biophysical Aspects of Blood Flow in the Microvasculature
,”
Cardiovasc. Res.
0008-6363,
32
, pp.
654
667
.
9.
Sugihara-Seki
,
M.
, and
Fu
,
B. M.
, 2005, “
Blood Flow and Permeability in Micro Vessels
,”
Fluid Dyn. Res.
0169-5983,
37
, pp.
82
132
.
10.
El-Shahed
,
M.
, 2004, “
Blood Flow in a Capillary With Permeable Wall
,”
Physica A
0378-4371,
338
, pp.
544
558
.
11.
Decuzzi
,
P.
,
Causa
,
F.
,
Ferrari
,
M.
, and
Netti
,
P. A.
, 2006, “
The Effective Dispersion of Nanovectors Within the Tumor Microvasculature
,”
Ann. Biomed. Eng.
0090-6964,
34
, pp.
633
641
.
12.
Pozrikidis
,
C.
, 2010, “
Numerical Simulation of Blood and Interstitial Flow Through a Solid Tumor
,”
J. Math. Biol.
0303-6812,
60
, pp.
75
94
.
13.
Secomb
,
T. W.
, and
Hsu
,
R.
, 1997, “
Resistance to Blood Flow in Nonuniform Capillaries
,”
Microcirculation
,
4
, pp.
421
427
.
14.
Cokelet
,
G. R.
, 1972,
The Rheology of Human Blood
,
Prentice-Hall
,
New Jersey
.
15.
Scott Blair
,
G. W.
, and
Spanner
,
D. C.
, 1974,
An Introduction to Biorheology
,
Elsevier
,
Amsterdam
, p.
51
.
16.
Fung
,
Y. C.
, 1984,
Biodynamics: Circulation
,
Springer
,
New York
.
17.
Tu
,
C.
, and
Deville
,
M.
, 1996, “
Pulsatile Flow of Non-Newtonian Fluids Through Arterial Stenoses
,”
J. Biomech.
0021-9290,
29
(
7
), pp.
899
908
.
18.
Kim
,
S.
,
Namgung
,
B.
,
Ong
,
P. K.
,
Cho
,
Y. I.
,
Chun
,
K. J.
, and
Lim
,
D.
, 2009, “
Determination of Rheological Properties of Whole Blood With a Scanning Capillary-Tube Rheomete Using Constitutive Models
,”
J. Mech. Sci. Technol.
1738-494X,
23
, pp.
1718
1726
.
19.
Sankar
,
D. S.
, and
Hemalatha
,
K.
, 2006, “
Pulsatile Flow of Herschel–Bulkley Fluid Through Stenosed Arteries—A Mathematical Model
,”
Int. J. Non-Linear Mech.
0020-7462,
41
, pp.
979
990
.
20.
Furlani
,
E. P.
, and
Ng
,
K. C.
, 2006, “
Analytic Model of Magnetic Nanoparticle Transport and Capture in the Micrvasculature
,”
Phys. Rev. E
1063-651X,
73
, p.
061919
.
21.
Furlani
,
E. J.
, and
Furlani
,
E. P.
, 2007, “
A Model for Predicting Magnetic Targeting of Multifunctional Particles in the Microvasculature
,”
J. Magn. Magn. Mater.
0304-8853,
312
, pp.
187
193
.
22.
Shaw
,
S.
,
Murthy
,
P. V. S. N.
, and
Pradhan
,
S. C.
, 2010, “
Effect of Non-Newtonian Characteristics of Blood on Magnetic Targeting in the Impermeable Micro Vessel
,”
J. Magn. Magn. Mater.
0304-8853,
322
, pp.
1037
1043
.
23.
Mazumdar
,
J. N.
, 1992,
Bio-Fluid Mechanics
,
World Scientific
,
Singapore
, pp.
87
90
.
24.
Gentile
,
F.
,
Ferrari
,
M.
, and
Decuzzi
,
P.
, 2008, “
The Transport of Nanoparticles in Blood Vessels: The Effect of Vessel Permeability and Blood Rheology
,”
Ann. Biomed. Eng.
0090-6964,
36
, pp.
254
261
.
25.
Atapattu
,
D. D.
,
Chhabra
,
R. P.
, and
Uhlherr
,
P. H. T.
, 1995, “
Creeping Sphere Motion in Herschel-Bulkley Fluids: Flow Field and Drag
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
59
, pp.
245
265
.
26.
Chhabra
,
R. P.
, and
Richardson
,
J. F.
, 2008,
Non-Newtonian Flow and Applied Rheology
, 2nd ed.,
Pergamon
,
New York
, p.
252
.
27.
Ansley
,
R.
, and
Smith
,
T. N.
, 1967, “
Motion of Spherical Particles in a Bingham Plastic
,”
AIChE J.
0001-1541,
13
, pp.
1193
1196
.
28.
He
,
Y. B.
,
Laskowski
,
J. S.
, and
Klein
,
B.
, 2001, “
Particle Movement in Non-Newtonian Slurries: The Effect of Yield Stress on Dense Medium Separation
,”
Chem. Eng. Sci.
0009-2509,
13
, pp.
2991
2998
.
You do not currently have access to this content.