Abstract

A process flow is described for the low cost, flexible fabrication of metal micro-electromechanical systems (MEMS) with high performance integrated sensing. The process is capable of producing new designs in ≈1 week at an average unit cost of <$1 k/device even at batch sizes of ≈1–10, with expected sensing performance limits of about 135 dB over a 10 kHz sensor bandwidth. This is a ≈20× reduction in cost, ≈25× reduction in time, and potentially >30× increase in sensing dynamic range over comparable state-of-the-art compliant nanopositioners. The nonlithographically based microfabrication (NLBM) process is uniquely suited to create high performance nanopositioning architectures which are customizable to the positioning requirements of a range of nanoscale applications. These can significantly reduce the cost of nanomanufacturing research and development, as well as accelerate the development of new processes and the testing of fabrication process chains without excess capital investment. A six degrees-of-freedom (6DOF) flexural nanopositioner with integrated sensing for all 6DOF was fabricated using the newly developed process chain. The fabrication process was measured to have ≈30 μm alignment. Sensor arm, flexure, and trace widths of 150 μm, 150 μm, and 800 μm, respectively, were demonstrated. Process capabilities suggest lower bounds of 25 μm, 50 μm, and 100 μm, respectively. Dynamic range sensing of 52 dB was demonstrated for the nanopositioner over a 10 kHz sensor bandwidth. Improvements are proposed to approach sensor performance of about 135 dB over a 10 kHz sensor bandwidth.

References

1.
Panas
,
R. M.
,
Cullinan
,
M. A.
, and
Culpepper
,
M. L.
,
2011
, “
Non-Lithographically-Based Microfabrication of Precision MEMS Nanopositioning Systems
,”
Proceeding of 26th Annual Meeting American Society Precision Engineering
, Denver, CO.https://www.researchgate.net/publication/335892644_NON-LITHOGRAPHICALLY-BASED_MICROFABRICATION_OF_PRECISION_MEMS_NANOPOSITIONING_SYSTEMS
2.
DiBiasio
,
C. D.
,
2010
, “
Concept Synthesis and Design Optimization of Meso-Scale, Multi-Degree-of-Freedom Precision Flexure Motion Systems With Integrated Strain-Based Sensors
,”
Ph.D. thesis
, Massachusetts Institute of Technology, Boston, MA.https://dspace.mit.edu/handle/1721.1/61518
3.
Haaheim
,
J.
, and
Nafday
,
O. A.
,
2008
, “
Dip Pen Nanolithography: A “Desktop Nanofab” Approach Using High-Throughput Flexible Nanopatterning
,”
Scanning
,
30
(
2
), pp.
137
150
.10.1002/sca.20098
4.
Zhang
,
W.
,
Pang
,
M.
, and
Ru
,
C.
,
2016
, “
Nanopositioning for Lithography and Data Storage
,”
Nanopositioning Technology Fundamental Applications
,
C.
Ru
,
X.
Liu
,
Y.
Sun
, eds.,
Cham
,
Springer International Publishing
, pp.
381
409
.
5.
Hu
,
H.
,
Kim
,
H. J.
, and
Somnath
,
S.
,
2017
, “
Tip-Based Nanofabrication for Scalable Manufacturing
,”
Micromachines
,
8
(
3
), p.
90
.10.3390/mi8030090
6.
Gotszalk
,
T.
,
Jóźwiak
,
G.
,
Radojewski
,
J.
,
Fröhlich
,
T.
,
Füssl
,
R.
,
Manske
,
E.
,
Holz
,
M.
,
Ivanov
,
T.
,
Ahmad
,
A.
, and
Rangelow
,
I. W.
,
2019
, “
Tip-Based Nano-Manufacturing and -Metrology
,”
J. Vac. Sci. Technol. B
,
37
(
3
), p.
030803
.10.1116/1.5083044
7.
Chaka
,
A.
,
2008
, “
Cross-Industry Issues in Nanomanufacturing
,”
National Institute of Standards and Technology
,
Gaithersburg, MD
, pp.
1
90
.
8.
Ru
,
C.
,
Liu
,
X.
, and
Sun
,
Y.
,
2016
,
Nanopositioning Technologies
, C. Ru, X. Liu, and Y. Sun, eds.,
Springer International Publishing
,
Berlin
, pp.
1
409
.
9.
Favre
,
M.
,
Polesel-Maris
,
J.
,
Overstolz
,
T.
,
Niedermann
,
P.
,
Dasen
,
S.
,
Gruener
,
G.
,
Ischer
,
R.
,
Vettiger
,
P.
,
Liley
,
M.
,
Heinzelmann
,
H.
, and
Meister
,
A.
,.
2011
, “
Parallel AFM Imaging and Force Spectroscopy Using Two-Dimensional Probe Arrays for Applications in Cell Biology
,”
J. Mol. Recognit.
,
24
(
3
), pp.
446
452
.10.1002/jmr.1119
10.
Yao
,
T.-F.
,
Connolly
,
L. G.
, and
Cullinan
,
M.
,
2019
, “
Expanded Area Metrology for Tip-Based Wafer Inspection in the Nanomanufacturing of Electronic Devices
,”
J Micro/Nanolithogr., MEMS, MOEMS
,
18
(
03
), p.
1
.10.1117/1.JMM.18.3.034003
11.
Kaestner
,
M.
,
Aydogan
,
C.
,
Ivanov
,
T.
,
Ahmad
,
A.
,
Angelov
,
T.
,
Reum
,
A.
,
Ishchuk
,
V.
,
Krivoshapkina
,
Y.
,
Hofer
,
M.
,
Lenk
,
S.
,
Atanasov
,
I.
,
Holz
,
M.
, and
Rangelow
,
I. W.
,
2015
, “
Advanced Electric-Field Scanning Probe Lithography on Molecular Resist Using Active Cantilever
,”
J. Micro/Nanolithogr., MEMS, MOEMS
,
14
(
3
), p.
031202
.10.1117/1.JMM.14.3.031202
12.
Sun
,
Y.
,
Nelson
,
B. J.
,
Potasek
,
D. P.
, and
Enikov
,
E.
,
2002
, “
A Bulk Microfabricated Multi-Axis Capacitive Cellular Force Sensor Using Transverse Comb Drives
,”
J. Micromech. Microeng.
,
12
(
6
), pp.
832
840
.10.1088/0960-1317/12/6/314
13.
Jia
,
C.
,
Zhao
,
L.
,
Jiang
,
W.
,
Liu
,
X.
,
Yu
,
M.
,
Huang
,
M.
,
Xia
,
Y.
,
Zhao
,
Y.
, and
Zhao
,
Y.
,
2018
, “
Impact Experiment Analysis of MEMS Ultra-High G Piezoresistive Shock Accelerometer
,”
Proceedings of IEEE International Conference Micro Electro Mechanical System
, Belfast, UK, Jan. 21–25, pp.
964
967
.10.1109/MEMSYS.2018.8346718
14.
Yu
,
M.
,
Zhao
,
L.
,
Jia
,
C.
,
Wang
,
H.
,
Zhao
,
Y.
, and
Jiang
,
Z.
,
2019
, “
A High-g Triaxial Piezoresistive Accelerometer With Sensing Beams in Pure Axial Deformation
,” Proceedings of 14th Annual IEEE International Conference Nano/Micro Engineering Molecular System (
NEMS 2019
), Bangkok, Thailand, Apr. 11–14, pp.
176
80
.10.1109/NEMS.2019.8915619
15.
Yu
,
M.
,
Zhao
,
L.
,
Jiang
,
W.
,
Jia
,
C.
,
Li
,
Z.
,
Zhao
,
Y.
, and Jiang, Z.,
2018
, “
A Two-Axis MEMS Piezoresistive in-Plane Accelerometer With Pure Axially Deformed Microbeams
,”
Proceedings IEEE Sensors 2018
, New Delhi, India, Oct. 1–4, pp.
1
4
.10.1109/ICSENS.2018.8589746
16.
Tseng
,
A. A.
,
Notargiacomo
,
A.
, and
Chen
,
T. P.
,
2005
, “
Nanofabrication by Scanning Probe Microscope Lithography: A Review
,”
J. Vac. Sci. Technol. B Microelectron. Nanom. Struct.
,
23
(
3
), pp.
877
894
.10.1116/1.1926293
17.
Ehmann
,
K. F.
,
Bourell
,
D.
,
Culpepper
,
M. L.
,
Hodgson
,
T. J.
,
Kurfess
,
T. R.
,
Madou
,
M.
, Rajurkar, K., and Devor, R. E.,
2005
, “
WTEC Panel Report on International Assessment of Research and Development in Micromanufacturing
,” World Technology Evaluation Center (WTEC), Lancaster, PA, accessed Apr. 19, 2020, http://www.wtec.org/micromfg/report/Micro-report.pdf
18.
Zimmermann
,
A.
, and
Dimov
,
S.
,
2019
, “
Special Issue on “Micro/Nano Manufacturing
,”
Appl. Sci.
,
9
(
11
), p.
2378
.10.3390/app9112378
19.
Slocum
,
A. H.
,
1992
,
Precision Machine Design
,
Prentice Hall
,
Eaglewood Cliffs, NJ
.
20.
Zhang
,
Z.
, and
Menq
,
C.-H.
,
2007
, “
Laser Interferometric System for Six-Axis Motion Measurement
,”
Rev. Sci. Instrum.
,
78
(
8
), p.
083107
.10.1063/1.2776011
21.
Brouwer
,
D. M.
,
de Jong
,
B. R.
, and
Soemers
,
H. M. J. R.
,
2010
, “
Design and Modeling of a Six DOFs MEMS-Based Precision Manipulator
,”
Precis. Eng.
,
34
(
2
), pp.
307
319
.10.1016/j.precisioneng.2009.08.001
22.
Rakotondrabe
,
M.
,
Fowler
,
A. G.
, and
Moheimani
,
S. O. R.
,
2012
, “
Characterization of a 2-DoF MEMS Nanopositioner With Integrated Electrothermal Actuation and Sensing
,”
IEEE Sensors, Taipei
, Taiwan, Oct. 28–31, pp.
1
4
10.1109/ICSENS.2012.6411138
23.
Bell
,
D. J.
,
Lu
,
T. J.
,
Fleck
,
N. A.
, and
Spearing
,
S. M.
,
2005
, “
MEMS Actuators and Sensors: Observations on Their Performance and Selection for Purpose
,”
J. Micromech. Microeng.
,
15
(
7
), pp.
S153
S164
.10.1088/0960-1317/15/7/022
24.
Tadigadapa
,
S. A.
, and
Najafi
,
N.
,
2003
, “
Developments in Microelectromechanical Systems (MEMS): A Manufacturing Perspective
,”
ASME J. Manuf. Sci. Eng.
,
125
(
4
), pp.
816
823
.10.1115/1.1617286
25.
Madou
,
M. J.
,
2002
, “
Fundamentals of Microfabrication: The Science of Miniaturization
,” 2nd ed.,
CRC Press
,
Boca Raton, FL
.
26.
Fan
,
X.
,
Zhang
,
H.
,
Liu
,
S.
,
Hu
,
X.
, and
Jia
,
K.
,
2006
, “
NIL—A Low-Cost and High-Throughput MEMS Fabrication Method Compatible With IC Manufacturing Technology
,”
Microelectron. J.
,
37
(
2
), pp.
121
126
.10.1016/j.mejo.2005.04.047
27.
Packard
,
C. E.
,
Murarka
,
A.
,
Lam
,
E. W.
,
Schmidt
,
M. A.
, and
Bulović
,
V.
,
2010
, “
Contact-Printed Microelectromechanical Systems
,”
Adv. Mater.
,
22
(
16
), pp.
1840
1844
.10.1002/adma.200903034
28.
Huo
,
D.
,
Cheng
,
K.
, and
Wardle
,
F.
,
2010
, “
Design of a Five-Axis Ultra-Precision Micro-Milling Machine—UltraMill. Part 1: Holistic Design Approach, Design Considerations and Specifications
,”
Int. J. Adv. Manuf. Technol.
,
47
(
9–12
), pp.
867
877
.10.1007/s00170-009-2128-2
29.
Tang
,
P. T.
,
Fugl
,
J.
,
Uriarte
,
L.
,
Bissacco
,
G.
, and
Hansen
,
H. N.
,
2006
, “
Indirect Tooling Based on Micromilling, Electroforming and Selective Etching
,”
Proceedings of Second International Conference Multi-Material Micro Manufacturing
, 4M2006, Grenoble, France, Sept. 20–22. pp.
183
186
.
30.
Azcarate
,
S.
,
Uriarte
,
L.
,
Bigot
,
S.
,
Bolt
,
P.
,
Staemmler
,
L.
,
Tosello
,
G.
,
Roth
,
S.
, and
Schoth
,
A.
,
2006
, “
Hybrid Tooling: A Review of Process Chains for Tooling Microfabrication Within 4M
,”
Proceedings of Second International Conference Multi-Material Micro Manufacturing, 4M2006
, Grenoble, France, Sept. 20–22, pp.
1
4
.10.1016/B978-008045263-0/50069-6
31.
Nestler
,
J.
,
Hiller
,
K.
,
Gessner
,
T.
,
Buergi
,
L.
,
Soechtig
,
J.
,
Stanley
,
R.
, Voirin, G., and Bigot, S.,
2006
, “
A New Technology Platform for Fully Integrated Polymer Based Micro Optical Fluidic Systems
,”
Proceedings of Second International Conference Multi-Material Micro Manufacturing, 4M2006
, Grenoble, France, Sept. 20–22, pp.
35
38
.
32.
Gafford
,
J. B.
,
Panas
,
R. M.
,
Cullinan
,
M. A.
, and
Culpepper
,
M. L.
,
2010
, “
Design Principles and Best Practices for Rapid Prototyping of Meso- and Micro-Scale Flexures Via Micromilling
,”
Proceedings of 25th Annual Meeting American Society Precision Engineering,
Atlanta, GA.
33.
Xie
,
B.
,
Kumar
,
M. N.
,
Yan
,
D. P.
, and
Jin
,
X.
,
2017
, “
Material Behavior in Micro Milling of Zirconium Based Bulk Metallic Glass
,”
146th Annual Meeting and Exhibition Supplemental Proceedings
,
Springer International Publishing
,
Cham, Switzerland
, pp.
363
373
.
34.
Lam
,
E. W.
,
Li
,
H.
, and
Schmidt
,
M. A.
,
2009
, “
Silver Nanoparticle Structures Realized by Digital Surface Micromachining
,”
Proceedings of 15th International Conference Solid-State Sensors, Actuators Microsystems, Transducers
, Denver, CO, June 21–25, pp.
1698
701
.10.1109/SENSOR.2009.5285759
35.
Waller
,
E. H.
, and
Von Freymann
,
G.
,
2018
, “
From Photoinduced Electron Transfer to 3D Metal Microstructures Via Direct Laser Writing
,”
Nanophotonics
,
7
(
7
), pp.
1259
1277
.10.1515/nanoph-2017-0134
36.
Culpepper
,
M. L.
, and
Anderson
,
G.
,
2004
, “
Design of a Low-Cost Nano-Manipulator Which Utilizes a Monolithic, Spatial Compliant Mechanism
,”
Prec. Eng.
,
28
(
4
), pp.
469
482
.10.1016/j.precisioneng.2004.02.003
37.
Panas
,
R. M.
,
2013
, Design and Fabrication of a Multipurpose Compliant Nanopositioning Architecture,
Ph.D. thesis
,
Massachusetts Institute of Technology
,
Cambridge, MA
.https://dspace.mit.edu/handle/1721.1/81754
38.
Panas
,
R. M.
, and
Culpepper
,
M. L.
,
2015
, “
Engineering Low Temperature Electrical Interfaces to Silicon
,”
IEEE Trans. Electr. Devices
, p.
62
.
39.
Panas
,
R. M.
, and
Culpepper
,
M. L.
,
2020
, “
Design Optimization of Semiconductor Piezoresistors With Schottky Diode Contacts
,”
Precis. Eng.
,
64
, pp.
211
219
.
40.
Panas
,
R. M.
,
Cullinan
,
M. A.
, and
Culpepper
,
M. L.
,
2012
, “
Design of Piezoresistive-Based MEMS Sensor Systems for Precision Microsystems
,”
Precis. Eng.
,
36
(
1
), pp.
44
54
.10.1016/j.precisioneng.2011.07.004
41.
Golda
,
D.
, and
Culpepper
,
M. L.
,
2008
, “
Modeling 3D Magnetic Fields for Precision Magnetic Actuators That Use Non-Periodic Magnet Arrays
,”
Precis. Eng.
,
32
(
2
), pp.
134
142
.10.1016/j.precisioneng.2007.06.002
42.
Golda
,
D.
,
Lang
,
J. H.
, and
Culpepper
,
M. L.
,
2008
, “
Two-Layer Electroplated Microcoils With a PECVD Silicon Dioxide Interlayer Dielectric
,”
J. Microelectromech. Syst
,
17
(
6
), pp.
1537
1545
.10.1109/JMEMS.2008.2007264
43.
Golda
,
D.
,
2008
, “
Design of a High-Speed, Meso-Scale Nanopositioners Driven by Electromagnetic Actuators
,”
Ph.D. thesis
, Massachusetts Institute of Technology, Cambridge, MA.https://dspace.mit.edu/handle/1721.1/43145
44.
Chen
,
S.-C.
, and
Culpepper
,
M. L.
,
2006
, “
Design of a Six-Axis Micro-Scale Nanopositioner—μHexFlex
,”
Precis. Eng.
,
30
(
3
), pp.
314
324
.10.1016/j.precisioneng.2005.11.002
45.
Cullinan
,
M. A.
, and
Culpepper
,
M. L.
,
2010
, “
Carbon Nanotubes as Piezoresistive Microelectromechanical Sensors: Theory and Experiment
,”
Phys. Rev. B
,
82
, p.
115428
.10.1103/PhysRevB.82.115428
46.
Kulite Semiconductor Products, Inc.,
2011
, “
Kulite Strain Gage Manual
,”
Kulite Semiconductor Products, Inc.
,
Leonia, NJ
.
47.
Maiwald
,
M.
,
Werner
,
C.
,
Zoellmer
,
V.
, and
Busse
,
M.
,
2010
, “
INKtelligent Printed Strain Gauges
,”
Sens. Actuators A Phys.
,
162
(
2
), pp.
198
201
.10.1016/j.sna.2010.02.019
48.
Aimi
,
M. F.
,
Rao
,
M. P.
,
MacDonald
,
N. C.
,
Zuruzi
,
A. S.
, and
Bothman
,
D. P.
,
2004
, “
High-Aspect-Ratio Bulk Micromachining of Titanium
,”
Nat. Mater.
,
3
(
2
), pp.
103
105
.10.1038/nmat1058
49.
Çakir
,
O.
,
Yardimeden
,
A.
, and
Özben
,
T.
,
2007
, “
Chemical Machining
,”
Arch. Mater. Sci. Eng.
,
28
, pp.
499
502
.https://www.researchgate.net/profile/Orhan_Cakir3/publication/40728038_Chemical_machining/links/541f26a60cf2218008d3e43c/Chemical-machining.pdf
50.
Rajurkar
,
K. P.
,
Zhu
,
D.
,
McGeough
,
J. A.
,
Kozak
,
J.
, and
De Silva
,
A.
,
1999
, “
New Developments in Electro-Chemical Machining
,”
CIRP Ann. Technol.
,
48
(
2
), pp.
567
579
.10.1016/S0007-8506(07)63235-1
51.
Jin
,
F.
,
Chu
,
P. K.
,
Wang
,
K.
,
Zhao
,
J.
,
Huang
,
A.
, and
Tong
,
H.
,
2008
, “
Thermal Stability of Titania Films Prepared on Titanium by Micro-Arc Oxidation
,”
Mater. Sci. Eng. A
,
476
(
1–2
), pp.
78
82
.10.1016/j.msea.2007.05.070
52.
Abdolldhi
,
Z.
,
Ziaee
,
A. A. M.
, and
Afshar
,
A.
,
2009
, “
Investigation of Titanium Oxide Layer in Thermal-Electrochemical Anodizing of Ti6Al4V Alloy
,”
Int. J. Chem. Biol. Eng.
,
2
, pp.
44
47
.10.5281/zenodo.1330291
53.
Gaul
,
E.
,
1993
, “
Coloring Titanium and Related Metals by Electrochemical Oxidation
,”
J. Chem. Educ.
,
70
(
3
), pp.
176
178
.10.1021/ed070p176
54.
Delplancke
,
J.-L.
, and
Winand
,
R.
,
1988
, “
Galvanostatic Anodization of Titanium-I. Structures and Compositions of the Anodic Films
,”
Electrochim. Acta
,
33
(
11
), pp.
1539
1549
.10.1016/0013-4686(88)80223-8
55.
Breckenridge
,
R. G.
, and
Hosler
,
W. R.
,
1952
, “
Titanium Dioxide Rectifiers
,”
J. Res. Natl. Bur. Stand.
,
49
(
2
), pp.
65
72
.10.6028/jres.049.009
56.
Fitzgibbons
,
E. T.
, and
Hartwig
,
W. H.
,
1970
,
Vapor Deposited Titanium Dioxide Thin Films: Some Properties as a Function of Crystalline Phase
,
Texas University at Austin Electronics Research Center
,
Austin, TX
.
57.
Goth
,
C.
,
Putzo
,
S.
, and
Franke
,
J.
,
2011
, “
Aerosol Jet Printing on Rapid Prototyping Materials for Fine Pitch Electronic Applications
,”
IEEE 61st Electronic Components Technology Conference
, Lake Buena Vista, FL, May 31–June 3, pp.
1211
1216
.10.1109/ECTC.2011.5898664
58.
Seifert
,
F.
,
2009
, “
Resistor Current Noise Measurements
,” LIGO, White Paper, No.
LIGO-T0900200-v1
. https://dcc.ligo.org/public/0002/T0900200/001/current_noise.pdf
59.
Belman
,
M.
, and
Hernik
,
Y.
,
2010
, “
Selecting Resistors for Pre-Amp, Amplifier, and Other High-End Audio Applications
,”
EE Times
, pp.
1
7
.
60.
Hooge
,
F. N.
,
1994
, “
1/f Noise Sources
,”
IEEE Trans. Electron Devices
,
41
(
11
), pp.
1926
1935
.10.1109/16.333808
61.
Fastykovsky
,
P. P.
,
1992
, “
Schottky Contact-Based Strain-Gauge Elements
,”
Proc. 1992 Int. Conf. Ind. Electron. Control Instrumentation, Automatic Power Electronic Motion Control
, San Diego, CA, Nov. 13, pp.
1568
1570
.10.1109/IECON.1992.254367
62.
Silva
,
J. A.
,
Pêra
,
D.
,
Brito
,
M. C.
,
Alves
,
J. M.
,
Serra
,
J.
, and
Vallêra
,
A. M.
,
2011
, “
Understanding the Sprayed Boric Acid Method for Bulk Doping of Silicon Ribbons
,”
J. Cryst. Growth
,
327
(
1
), pp.
221
226
.10.1016/j.jcrysgro.2011.05.014
63.
Dobbs
,
B. C.
,
Hemenger
,
P. M.
, and
Smith
,
S. R.
,
1977
, “
Ohmic Contacts on High Purity P-Type Silicon
,”
J. Electron. Mater.
,
6
(
6
), pp.
705
716
.10.1007/BF02660345
You do not currently have access to this content.