Abstract

Aerosol jet printing (AJP) is an ink-depositing additive manufacturing method used in the production of small-scale electronic devices, utilizing a gas flow to aerodynamically print conductive lines. Although the process shows promise, its potential is limited by quality-limiting phenomena. Predicting their occurrence can be a time-consuming and complex process due to the strong sensitivity of the process to individual operating conditions, limiting reproducibility. This oftentimes can render experimental setups uneconomical. Numerical methods, such as computational fluid dynamics, are appealing due to their ability to easily change process parameters, enabling cost-effective analysis of several process setups. As we consider turbulence to be one of the primary causes of quality limitations, it is crucial to predict turbulent properties accurately when numerically modeling the flow. Traditional turbulence modeling within a Reynolds-averaged Navier–Stokes (RANS) approach has been found to be inadequate for accurately predicting turbulent quantities of low Reynolds number free jets, rendering it unsuitable as a tool for investigations of aerosol jet printing. In the study presented, a first step toward three-dimensional investigation of a free jet under aerosol jet printing operating conditions using large eddy simulation (LES) is proposed. The accuracy of the model regarding predictability of turbulent quantities is assessed in a first manner by comparing turbulent transition points to experimental findings and found to be in overall satisfactory agreement.

References

1.
Fapanni
,
T.
,
Borghetti
,
M.
,
Sardini
,
E.
, and
Serpelloni
,
M.
,
2020
, “
Novel Piezoelectric Sensor by Aerosol Jet Printing in Industry 4.0
,”
2020 IEEE International Workshop on Metrology for Industry 4.0 & IoT
, Roma, Italy, June 3–5, pp. 379–383.10.1109/MetroInd4.0IoT48571.2020.9138219
2.
Zhang
,
H.
,
Moon
,
S. K.
, and
Ngo
,
T. H.
,
2020
, “
3D Printed Electronics of Non-Contact Ink Writing Techniques: Status and Promise
,”
Int. J. Precis. Eng. Manuf.-Green Technol.
,
7
(
2
), pp.
511
524
.10.1007/s40684-019-00139-9
3.
Lall
,
P.
,
Soni
,
V.
, and
Hill
,
C.
,
2021
, “
Process Development for Printing Copper Conductible Ink on Flexible Substrates Using Aerosol Jet Printing Technology
,”
2021 20th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm)
, San Diego, CA, June 1–4, pp.
1073
1084
.10.1109/ITherm51669.2021.9503246
4.
Mahajan
,
A.
,
Frisbie
,
C. D.
, and
Francis
,
L. F.
,
2013
, “
Optimization of Aerosol Jet Printing for High-Resolution, High-Aspect Ratio Silver Lines
,”
ACS Appl. Mater. Interfaces
,
5
(
11
), pp.
4856
4864
.10.1021/am400606y
5.
Feng
,
J. Q.
,
Ramm
,
A.
, and
Renn
,
M. J.
,
2021
, “
A Quantitative Analysis of Overspray in Aerosol Jet® Printing
,”
Flexible Printed Electron.
,
6
(
4
), p.
045006
.10.1088/2058-8585/ac3019
6.
Verheecke
,
W.
,
Van Dyck
,
M.
,
Vogeler
,
F.
,
Voet
,
A.
, and
Valkenaers
,
H.
,
2012
, “
Optimizing Aerosol Jet® Printing of Silver Interconnects on Polyimide Film for Embedded Electronics Applications
,”
Eighth International DAAAM Baltic Conference “INDUSTRIAL ENGINEERING,”
Tallinn, Estonia, Apr. 19–21, pp. 373--379.http://www.davidlu.net/Verheecke.pdf
7.
Secor
,
E. B.
,
2018
, “
Principles of Aerosol Jet Printing
,”
Flexible Printed Electron.
,
3
(
3
), p.
035002
.10.1088/2058-8585/aace28
8.
Feng
,
J. Q.
,
2019
, “
Mist Flow Visualization for Round Jets in Aerosol Jet® Printing
,”
Aerosol Sci. Technol.
,
53
(
1
), pp.
45
52
.10.1080/02786826.2018.1532566
9.
Kwon
,
S. J.
, and
Seo
,
I. W.
,
2005
, “
Reynolds Number Effects on the Behavior of a Non-Buoyant Round Jet
,”
Exp. Fluids
,
38
(
6
), pp.
801
812
.10.1007/s00348-005-0976-6
10.
Bogey
,
C.
, and
Bailly
,
C.
,
2006
, “
Large Eddy Simulations of Transitional Round Jets: Influence of the Reynolds Number on Flow Development and Energy Dissipation
,”
Phys. Fluids
,
18
(
6
), p.
065101
.10.1063/1.2204060
11.
Küblbeck
,
K.
,
Straub
,
J.
,
Blo
,
S.
, and
Grigull
,
U.
,
1978
, “
Experimentelle und numerische untersuchung laminarer, axisymmetrischer freistrahlen mit und ohne auftrieb
,”
Wärme- Stoffübertragung
,
11
(
2
), pp.
131
144
.10.1007/BF01682614
12.
Salary
,
R.
,
Lombardi
,
J.
,
Samie Tootooni
,
M.
,
Donovan
,
R.
,
Rao
,
P.
,
Borgesen
,
P.
, and
Poliks
,
M.
,
2017
, “
Computational Fluid Dynamics Modeling and Online Monitoring of Aerosol Jet Printing Process
,”
ASME J. Manuf. Sci. Eng.
,
139
(
2
), p.
021015
.10.1115/1.4034591
13.
Chen
,
G.
,
Gu
,
Y.
,
Tsang
,
H.
,
Hines
,
D.
, and
Das
,
S.
,
2018
, “
The Effect of Droplet Sizes on Overspray in Aerosol-Jet Printing
,”
Adv. Eng. Mater.
,
20
(
8
), p.
1701084
.10.1002/adem.201701084
14.
Akhatov
,
I.
,
Hoey
,
J.
,
Swenson
,
O.
, and
Schulz
,
D.
,
2008
, “
Aerosol Focusing in Micro-Capillaries: Theory and Experiment
,”
J. Aerosol Sci.
,
39
(
8
), pp.
691
709
.10.1016/j.jaerosci.2008.04.004
15.
Salary
,
R.
,
Lombardi
,
J.
, III
,
Weerawarne
,
D.
,
Rao
,
P.
, and
Poliks
,
M.
,
2018
, “
A Computational Fluid Dynamics (CFD) Study of Material Transport and Deposition in Aerosol Jet Printing (AJP) Process
,” ASME Paper No. IMECE2018-87647.10.1115/IMECE2018-87647
16.
Salary
,
R.
,
Lombardi
,
J. P.
,
Weerawarne
,
D. L.
,
Rao
,
P.
, and
Poliks
,
M. D.
,
2021
, “
A Computational Fluid Dynamics Investigation of Pneumatic Atomization, Aerosol Transport, and Deposition in Aerosol Jet Printing Process
,”
ASME J. Micro Nano Sci. Eng.
,
9
(
1
), p.
010903
.10.1115/1.4049958
17.
Lee
,
G.-Y.
,
Park
,
J.-I.
,
Kim
,
C.-S.
,
Yoon
,
H.-S.
,
Yang
,
J.
, and
Ahn
,
S.-H.
,
2014
, “
Aerodynamically Focused Nanoparticle (AFN) Printing: Novel Direct Printing Technique of Solvent-Free and Inorganic Nanoparticles
,”
ACS Appl. Mater. Interfaces
,
6
(
19
), pp.
16466
16471
.10.1021/am504304g
18.
Salary
,
R.
,
Lombardi
,
J. P.
,
Tootooni
,
M. S.
,
Donovan
,
R.
,
Rao
,
P. K.
, and
Poliks
,
M. D.
,
2016
, “
In Situ Sensor-Based Monitoring and Computational Fluid Dynamics (CFD) Modeling of Aerosol Jet Printing (AJP) Process
,”
ASME
Paper No. MSEC2016-8535.10.1115/MSEC2016-8535
19.
Ghahremanian
,
S.
, and
Moshfegh
,
B.
,
2014
, “
Evaluation of RANS Models in Predicting Low Reynolds, Free, Turbulent Round Jet
,”
ASME J. Fluids Eng.
,
136
(
1
), p.
011201
.10.1115/1.4025363
20.
Stephan
,
P.
,
Kabelac
,
S.
,
Kind
,
M.
,
Mewes
,
D.
,
Schaber
,
K.
, and
Wetzel
,
T.
, eds.,
2019
,
VDI-Wärmeatlas
, 12th ed.,
VDI Springer Reference, Springer Berlin Heidelberg
,
Berlin, Heidelberg, Germany
.
21.
ANSYS, Inc.
,
2020
,
ANSYS Fluent Theory Guide Release 2020 R1
,
ANSYS
,
Canonsburg, PA
.
22.
Gauntner
,
J. W.
,
Livingood
,
J. N. B.
, and
Hrycak
,
P.
,
1970
, “
Survey of Literature on Flow Characteristics of a Single Turbulent Jet Impinging on a Flat Plate
,” NASA Technical Note,
Washington D.C.
, Report No. NASA TN D-5652.https://www.fire.tc.faa.gov/pdf/fsr-0181.pdf
23.
Chai
,
X.
, and
Mahesh
,
K.
,
2012
, “
Dynamic k-Equation Model for Large-Eddy Simulation of Compressible Flows
,”
J. Fluid Mech.
,
699
, pp.
385
413
.10.1017/jfm.2012.115
You do not currently have access to this content.