Abstract

Two-photon lithography (TPL) is an attractive technique for nanoscale additive manufacturing of functional three-dimensional (3D) structures due to its ability to print subdiffraction features with light. Despite its advantages, it has not been widely adopted due to its slow point-by-point writing mechanism. Projection TPL (P-TPL) is a high-throughput variant that overcomes this limitation by enabling the printing of entire two-dimensional (2D) layers at once. However, printing the desired 3D structures is challenging due to the lack of fast and accurate process models. Here, we present a fast and accurate physics-based model of P-TPL to predict the printed geometry and the degree of curing. Our model implements a finite difference method (FDM) enabled by operator splitting to solve the reaction–diffusion rate equations that govern photopolymerization. When compared with finite element simulations, our model is at least a hundred times faster and its predictions lie within 5% of the predictions of the finite element simulations. This rapid modeling capability enabled performing high-fidelity simulations of printing of arbitrarily complex 3D structures for the first time. We demonstrate how these 3D simulations can predict those aspects of the 3D printing behavior that cannot be captured by simulating the printing of individual 2D layers. Thus, our models provide a resource-efficient and knowledge-based predictive capability that can significantly reduce the need for guesswork-based iterations during process planning and optimization.

References

1.
Baldacchini
,
T.
,
2015
,
Three-Dimensional Microfabrication Using Two-Photon Polymerization: Fundamentals, Technology, and Applications
,
William Andrew
, Waltham, MA.
2.
Jonušauskas
,
L.
,
Juodkazis
,
S.
, and
Malinauskas
,
M.
,
2018
, “
Optical 3D Printing: Bridging the Gaps in the Mesoscale
,”
J. Opt.
,
20
(
5
), p.
053001
.10.1088/2040-8986/aab3fe
3.
Sun
,
H.-B.
, and
Kawata
,
S.
,
2004
, “
Two-Photon Photopolymerization and 3D Lithographic Microfabrication
,”
NMR 3D Analysis Photopolymerization
,
Springer
, Berlin, Germany, pp.
169
273
.
4.
Narayan
,
R. J.
,
Doraiswamy
,
A.
,
Chrisey
,
D. B.
, and
Chichkov
,
B. N.
,
2010
, “
Medical Prototyping Using Two Photon Polymerization
,”
Mater. Today
,
13
(
12
), pp.
42
48
.10.1016/S1369-7021(10)70223-6
5.
Selimis
,
A.
,
Mironov
,
V.
, and
Farsari
,
M.
,
2015
, “
Direct Laser Writing: Principles and Materials for Scaffold 3D Printing
,”
Microelectron. Eng.
,
132
, pp.
83
89
.10.1016/j.mee.2014.10.001
6.
Wu
,
E.-S.
,
Strickler
,
J. H.
,
Harrell
,
W. R.
, and
Webb
,
W. W.
,
1992
, “
Two-Photon Lithography for Microelectronic Application
,”
Optical/Laser Microlithography V
,
San Jose, CA, Mar. 8–12, 776–783.10.1117/12.130367
7.
Bauer
,
J.
,
Schroer
,
A.
,
Schwaiger
,
R.
, and
Kraft
,
O.
,
2016
, “
Approaching Theoretical Strength in Glassy Carbon Nanolattices
,”
Nat. Mater.
,
15
(
4
), pp.
438
443
.10.1038/nmat4561
8.
Meza
,
L. R.
,
Das
,
S.
, and
Greer
,
J. R.
,
2014
, “
Strong, Lightweight, and Recoverable Three-Dimensional Ceramic Nanolattices
,”
Science
,
345
(
6202
), pp.
1322
1326
.10.1126/science.1255908
9.
Bauer
,
J.
,
Meza
,
L. R.
,
Schaedler
,
T. A.
,
Schwaiger
,
R.
,
Zheng
,
X.
, and
Valdevit
,
L.
,
2017
, “
Nanolattices: An Emerging Class of Mechanical Metamaterials
,”
Adv. Mater.
,
29
(
40
), p.
1701850
.10.1002/adma.201701850
10.
Hossain
,
M. M.
, and
Gu
,
M.
,
2014
, “
Fabrication Methods of 3D Periodic Metallic Nano/Microstructures for Photonics Applications
,”
Laser Photonics Rev.
,
8
(
2
), pp.
233
249
.10.1002/lpor.201300052
11.
Wang
,
H.
,
Zhang
,
W.
,
Ladika
,
D.
,
Yu
,
H.
,
Gailevičius
,
D.
,
Wang
,
H.
,
Pan
,
C.
, et al.,
2023
, “
Two‐Photon Polymerization Lithography for Optics and Photonics: Fundamentals, Materials, Technologies, and Applications
,”
Adv. Funct. Mater.
,
33
(
39
), p.
2214211
.10.1002/adfm.202214211
12.
Huang
,
T.
,
Sakar
,
M. S.
,
Mao
,
A.
,
Petruska
,
A. J.
,
Qiu
,
F.
,
Chen
,
X.
,
Kennedy
,
S.
,
Mooney
,
D.
, and
Nelson
,
B. J.
,
2015
, “
3D Printed Microtransporters: Compound Micromachines for Spatiotemporally Controlled Delivery of Therapeutic Agents
,”
Adv. Mater.
,
27
(
42
), pp.
6644
6650
.10.1002/adma.201503095
13.
Soreni-Harari
,
M.
,
St. Pierre
,
R.
,
McCue
,
C.
,
Moreno
,
K.
, and
Bergbreiter
,
S.
,
2020
, “
Multimaterial 3D Printing for Microrobotic Mechanisms
,”
Soft Rob.
,
7
(
1
), pp.
59
67
.10.1089/soro.2018.0147
14.
Cao
,
C.
,
Liu
,
J.
,
Xia
,
X.
,
Shen
,
X.
,
Qiu
,
Y.
,
Kuang
,
C.
, and
Liu
,
X.
,
2022
, “
Click Chemistry Assisted Organic-Inorganic Hybrid Photoresist for Ultra-Fast Two-Photon Lithography
,”
Addit. Manuf.
,
51
, p.
102658
.10.1016/j.addma.2022.102658
15.
Saha
,
S. K.
,
Wang
,
D.
,
Nguyen
,
V. H.
,
Chang
,
Y.
,
Oakdale
,
J. S.
, and
Chen
,
S.-C.
,
2019
, “
Scalable Submicrometer Additive Manufacturing
,”
Science
,
366
(
6461
), pp.
105
109
.10.1126/science.aax8760
16.
Somers
,
P.
,
Liang
,
Z.
,
Johnson
,
J. E.
,
Boudouris
,
B. W.
,
Pan
,
L.
, and
Xu
,
X.
,
2021
, “
Rapid, Continuous Projection Multi-Photon 3D Printing Enabled by Spatiotemporal Focusing of Femtosecond Pulses
,”
Light: Sci. Appl.
,
10
(
1
), p.
199
.10.1038/s41377-021-00645-z
17.
Ouyang
,
W.
,
Xu
,
X.
,
Lu
,
W.
,
Zhao
,
N.
,
Han
,
F.
, and
Chen
,
S.-C.
,
2023
, “
Ultrafast 3D Nanofabrication Via Digital Holography
,”
Nat. Commun.
,
14
(
1
), p.
1716
.10.1038/s41467-023-37163-y
18.
Hahn
,
V.
,
Kiefer
,
P.
,
Frenzel
,
T.
,
Qu
,
J.
,
Blasco
,
E.
,
Barner‐Kowollik
,
C.
, and
Wegener
,
M.
,
2020
, “
Rapid Assembly of Small Materials Building Blocks (Voxels) Into Large Functional 3D Metamaterials.
,”
Adv. Funct. Mater.
,
30
(
26
), p.
1907795
.10.1002/adfm.201907795
19.
Mueller
,
J. B.
,
Fischer
,
J.
,
Mayer
,
F.
,
Kadic
,
M.
, and
Wegener
,
M.
,
2014
, “
Polymerization Kinetics in Three‐Dimensional Direct Laser Writing
,”
Adv. Mater.
,
26
(
38
), pp.
6566
6571
.10.1002/adma.201402366
20.
Yang
,
L.
,
Münchinger
,
A.
,
Kadic
,
M.
,
Hahn
,
V.
,
Mayer
,
F.
,
Blasco
,
E.
,
Barner‐Kowollik
,
C.
, and
Wegener
,
M.
,
2019
, “
On the Schwarzschild Effect in 3D Two‐Photon Laser Lithography
,”
Adv. Opt. Mater.
,
7
(
22
), p.
1901040
.10.1002/adom.201901040
21.
Sun
,
M.
,
Cheng
,
H.
,
Golvari
,
P.
,
Kuebler
,
S. M.
,
Yu
,
X.
, and
Zhang
,
M.
,
2022
, “
Modeling of Two-Photon Polymerization in the Strong-Pulse Regime
,”
Addit. Manuf.
,
60
, p.
103241
.10.1016/j.addma.2022.103241
22.
Johnson
,
J. E.
,
Chen
,
Y.
, and
Xu
,
X.
,
2022
, “
Model for Polymerization and Self-Deactivation in Two-Photon Nanolithography
,”
Opt. Express
,
30
(
15
), pp.
26824
26840
.10.1364/OE.461969
23.
Pingali
,
R.
, and
Saha
,
S. K.
,
2022
, “
Reaction-Diffusion Modeling of Photopolymerization During Femtosecond Projection Two-Photon Lithography
,”
ASME J. Manuf. Sci. Eng.
,
144
(
2
), p.
021011
.10.1115/1.4051830
24.
Uppal
,
N.
, and
Shiakolas
,
P. S.
,
2008
, “
Modeling of Temperature-Dependent Diffusion and Polymerization Kinetics and Their Effects on Two-Photon Polymerization Dynamics
,”
J. Micro/Nanolithogr., MEMS MOEMS
,
7
(
4
), pp.
043002
043002
.10.1117/1.3033203
25.
Mueller
,
J. B.
,
Fischer
,
J.
, and
Wegener
,
M.
,
2016
, “
Reaction Mechanisms and in Situ Process Diagnostics
,”
Three-Dimensional Microfabrication Using Two-Photon Polymerization
,
Elsevier
, Waltham, MA, pp.
82
101
.
26.
Zimmerman
,
W. B. J.
,
2006
,
Multiphysics Modeling With Finite Element Methods
, Vol.
18
,
World Scientific Publishing Company
, Singapore.
27.
Kudela
,
J.
, and
Matousek
,
R.
,
2022
, “
Recent Advances and Applications of Surrogate Models for Finite Element Method Computations: A Review
,”
Soft Comput.
,
26
(
24
), pp.
13709
13733
.10.1007/s00500-022-07362-8
28.
Pingali
,
R.
, and
Saha
,
S.
,
2023
, “
Printability Prediction in Projection Two-Photon Lithography Via Machine Learning Based Surrogate Modeling of Photopolymerization
,”
ASME
Paper No. MSEC2023-104934.10.1115/MSEC2023-104934
29.
Li
,
Z.
,
Qiao
,
Z.
, and
Tang
,
T.
,
2017
,
Numerical Solution of Differential Equations: Introduction to Finite Difference and Finite Element Methods
,
Cambridge University Press
, Cambridge, UK.
30.
Thomas
,
J. W.
,
1998
,
Numerical Partial Differential Equations: Finite Difference Methods
, Vol.
22
,
Springer Science & Business Media
.
31.
Jagota
,
V.
,
Sethi
,
A. P. S.
, and
Kumar
,
K.
,
2013
, “
Finite Element Method: An Overview
,”
Walailak J. Sci. Technol. (WJST)
,
10
(
1
), pp.
1
8
.https://www.researchgate.net/publication/287331381_Finite_Element_Method_An_Overview#:~:text=The%20finite%20element%20method%20(FEM,approximation%20to%20the%20governing%20equations
32.
Edelson
,
D.
, and
Schryer
,
N. L.
,
1978
, “
Modeling Chemically Reacting Flow Systems—I. A Comparison of Finite Difference and Finite Element Methods for One-Dimensional Reactive Diffusion
,”
Comput. Chem.
,
2
(
2
), pp.
71
74
.10.1016/0097-8485(78)87004-1
33.
Ramos
,
J. I.
,
1983
, “
A Review of Some Numerical Methods for Reaction-Diffusion Equations
,”
Math. Comput. Simul.
,
25
(
6
), pp.
538
548
.10.1016/0378-4754(83)90127-1
34.
MacNamara
,
S.
, and
Strang
,
G.
,
2016
, “
Operator Splitting
,”
Splitting Methods in Communication, Imaging, Science, and Engineering
,
R.
Glowinski
,
S. J.
Osher
, and
W.
Yin
, eds.,
Springer International Publishing
,
Cham
, pp.
95
114
.
35.
Wichman
,
I. S.
,
1991
, “
On the Use of Operator-Splitting Methods for the Equations of Combustion
,”
Combust. Flame
,
83
(
3–4
), pp.
240
252
.10.1016/0010-2180(91)90072-J
36.
Ahmed
,
N.
,
Tahira
,
S. S.
,
Rafiq
,
M.
,
Rehman
,
M. A.
,
Ali
,
M.
, and
Ahmad
,
M. O.
,
2019
, “
Positivity Preserving Operator Splitting Nonstandard Finite Difference Methods for SEIR Reaction Diffusion Model
,”
Open Math.
,
17
(
1
), pp.
313
330
.10.1515/math-2019-0027
37.
Kim
,
H.
,
Pingali
,
R.
, and
Saha
,
S. K.
,
2023
, “
Rapid Printing of Nanoporous 3D Structures by Overcoming the Proximity Effects in Projection Two-Photon Lithography
,”
Virtual Phys. Prototyping
,
18
(
1
), p.
e2230979
.10.1080/17452759.2023.2230979
38.
Rumi
,
M.
,
Ehrlich
,
J. E.
,
Heikal
,
A. A.
,
Perry
,
J. W.
,
Barlow
,
S.
,
Hu
,
Z.
,
McCord-Maughon
,
D.
, et al.,
2000
, “
Structure−Property Relationships for Two-Photon Absorbing Chromophores: Bis-Donor Diphenylpolyene and Bis(Styryl)Benzene Derivatives
,”
J. Am. Chem. Soc.
,
122
(
39
), pp.
9500
9510
.10.1021/ja994497s
39.
Greenbaum
,
A.
,
1997
,
Iterative Methods for Solving Linear Systems
,
SIAM
, Philadelphia, PA.
40.
Tan
,
D.
, and
Chen
,
Z.
,
2012
, “
On a General Formula of Fourth Order Runge-Kutta Method
,”
J. Math. Sci. Math. Educ.
,
7
(
2
), pp.
1
10
.https://msme.us/2012-2-1.pdf
41.
Chapra
,
S. C.
, and
Canale
,
R. P.
,
2010
,
Numerical Methods for Engineers
,
McGraw-Hill Higher Education
, New York.
42.
Saha
,
S. K.
,
Divin
,
C.
,
Cuadra
,
J. A.
, and
Panas
,
R. M.
,
2017
, “
Effect of Proximity of Features on the Damage Threshold During Submicron Additive Manufacturing Via Two-Photon Polymerization
,”
ASME J. Micro Nano-Manuf.
,
5
(
3
), p.
031002
.10.1115/1.4036445
You do not currently have access to this content.