Abstract

The mechanical properties of acid-etched enamel and dentin are important for understanding tooth erosion and developing innovative dental restorative materials. In this study, the microstructure and mechanical properties of both enamel and dentin were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM) to quantify the impact of acid etching. SEM images demonstrated that enamel rods have a diameter of approximately 5 μm, while dentinal tubules have a diameter of around 2 μm. After acid etching, the intertubular and peritubular regions were exposed, with the peritubular regions showing a thickness of approximately 1 μm. AFM measurements showed that the stiffness of enamel at the bottom, middle, and top layers is 26.28±4.24 GPa, 32.03±8.68 GPa, and 23.94±3.53 GPa, respectively. For dentin, the stiffness is 16.28±2.76 GPa at the bottom layer and 17.59±5.33 GPa at the middle layer. AFM morphology and stiffness maps illustrated the microstructures of enamel rod and sheaths, as well as dentin tubules in both unetched and acid-etched tooth sections. The stiffness of the acid-etched enamel rod and peritubular dentin decreased by 7-fold and 3.6-fold, respectively, compared to the unetched enamel rod and peritubular dentin.

References

1.
Li
,
P.
,
Oh
,
C.
,
Kim
,
H.
,
Chen-Glasser
,
M.
,
Park
,
G.
,
Jetybayeva
,
A.
,
Yeom
,
J.
,
Kim
,
H.
,
Ryu
,
J.
, and
Hong
,
S.
,
2020
, “
Nanoscale Effects of Beverages on Enamel Surface of Human Teeth: An Atomic Force Microscopy Study
,”
J. Mech. Behav. Biomed. Mater.
,
110
, p.
103930
.10.1016/j.jmbbm.2020.103930
2.
Quartarone
,
E.
,
Mustarelli
,
P.
,
Poggio
,
C.
, and
Lombardini
,
M.
,
2008
, “
Surface Kinetic Roughening Caused by Dental Erosion: An Atomic Force Microscopy Study
,”
J. Appl. Phys.
,
103
(
10
), p.
104702
.10.1063/1.2927386
3.
Almeida E Silva
,
J. S.
,
Baratieri
,
L. N.
,
Araujo
,
E.
, and
Widmer
,
N.
,
2011
, “
Dental Erosion: Understanding This Pervasive Condition
,”
J. Esthetic Restor. Dent.
,
23
(
4
), pp.
205
216
.10.1111/j.1708-8240.2011.00451.x
4.
Barbour
,
M. E.
,
Finke
,
M.
,
Parker
,
D. M.
,
Hughes
,
J. A.
,
Allen
,
G. C.
, and
Addy
,
M.
,
2006
, “
The Relationship Between Enamel Softening and Erosion Caused by Soft Drinks at a Range of Temperatures
,”
J. Dent.
,
34
(
3
), pp.
207
213
.10.1016/j.jdent.2005.06.002
5.
Chun
,
K.
,
Choi
,
H.
, and
Lee
,
J.
,
2014
, “
Comparison of Mechanical Property and Role Between Enamel and Dentin in the Human Teeth
,”
J. Dent. Biomech.
,
5
, p.
1758736014520809
.10.1177/1758736014520809
6.
Pashley
,
D. H.
,
Agee
,
K. A.
,
Wataha
,
J. C.
,
Rueggeberg
,
F.
,
Ceballos
,
L.
,
Itou
,
K.
,
Yoshiyama
,
M.
,
Carvalho
,
R. M.
, and
Tay
,
F. R.
,
2003
, “
Viscoelastic Properties of Demineralized Dentin Matrix
,”
Dent. Mater.
,
19
(
8
), pp.
700
706
.10.1016/S0109-5641(03)00016-2
7.
Andrejovská
,
J.
,
Petruš
,
O.
,
Medveď
,
D.
,
Vojtko
,
M.
,
Riznič
,
M.
,
Kizek
,
P.
, and
Dusza
,
J.
,
2023
, “
Hardness and Indentation Modulus of Human Enamel and Dentin
,”
Surf. Interface Anal.
,
55
(
4
), pp.
270
278
.10.1002/sia.7187
8.
Doss
,
B. L.
,
Konkol
,
J. A.
,
Liu
,
Y.
,
Brinzari
,
T. V.
, and
Pan
,
L.
,
2023
, “
Correlative Atomic Force Microscopy and Raman Spectroscopy in Acid Erosion of Dentin
,”
Microsc. Microanal.
,
29
(
5
), pp.
1755
1763
.10.1093/micmic/ozad094
9.
Duverger
,
O.
,
Beniash
,
E.
, and
Morasso
,
M. I.
,
2016
, “
Keratins as Components of the Enamel Organic Matrix
,”
Matrix Biol.
,
52–54
, pp.
260
265
.10.1016/j.matbio.2015.12.007
10.
Purk
,
J. H.
,
2017
, “
Morphologic and Structural Analysis of Material-Tissue Interfaces Relevant to Dental Reconstruction
,”
Material-Tissue Interfacial Phenomena
,
Woodhead Publishing, Sawston, UK
, pp.
205
229
.
11.
Al-Mosawi
,
M.
,
Davis
,
G. R.
,
Bushby
,
A.
,
Montgomery
,
J.
,
Beaumont
,
J.
, and
Al-Jawad
,
M.
,
2018
, “
Crystallographic Texture and Mineral Concentration Quantification of Developing and Mature Human Incisal Enamel
,”
Sci. Rep.
,
8
(
1
), p.
14449
.10.1038/s41598-018-32425-y
12.
Simmons
,
L. M.
,
Al‐Jawad
,
M.
,
Kilcoyne
,
S. H.
, and
Wood
,
D. J.
,
2011
, “
Distribution of Enamel Crystallite Orientation Through an Entire Tooth Crown Studied Using Synchrotron X‐Ray Diffraction
,”
Eur. J. Oral Sci.
,
119
(
s1
), pp.
19
24
.10.1111/j.1600-0722.2011.00909.x
13.
Röhrle
,
O.
,
Saini
,
H.
,
Lee
,
P. V. S.
, and
Ackland
,
D. C.
,
2018
, “
A Novel Computational Method to Determine Subject-Specific Bite Force and Occlusal Loading During Mastication
,”
Comput. Methods Biomech. Biomed. Eng.
,
21
(
6
), pp.
453
460
.10.1080/10255842.2018.1479744
14.
Du
,
J.-K.
,
Wu
,
J.-H.
,
Chen
,
P.-H.
,
Ho
,
P.-S.
, and
Chen
,
K.-K.
,
2020
, “
Influence of Cavity Depth and Restoration of Non-Carious Cervical Root Lesions on Strain Distribution From Various Loading Sites
,”
BMC Oral Health
,
20
(
1
), p.
98
.10.1186/s12903-020-01083-w
15.
Tjäderhane
,
L.
,
Carrilho
,
M. R.
,
Breschi
,
L.
,
Tay
,
F. R.
, and
Pashley
,
D. H.
,
2009
, “
Dentin Basic Structure and Composition-an Overview: Overview of Dentin Structure
,”
Endod. Top.
,
20
(
1
), pp.
3
29
.10.1111/j.1601-1546.2012.00269.x
16.
Zafar
,
M. S.
, and
Ahmed
,
N.
,
2015
, “
The Effects of Acid Etching Time on Surface Mechanical Properties of Dental Hard Tissues
,”
Dent. Mater. J.
,
34
(
3
), pp.
315
320
.10.4012/dmj.2014-083
17.
Hu
,
J.
, and
Sui
,
T.
,
2020
, “
Insights Into the Reinforcement Role of Peritubular Dentine Subjected to Acid Dissolution
,”
J. Mech. Behav. Biomed. Mater.
,
103
, p.
103614
.10.1016/j.jmbbm.2019.103614
18.
Finke
,
M.
,
Hughes
,
J. A.
,
Parker
,
D. M.
, and
Jandt
,
K. D.
,
2001
, “
Mechanical Properties of In Situ Demineralised Human Enamel Measured by AFM Nanoindentation
,”
Surf. Sci.
,
491
(
3
), pp.
456
467
.10.1016/S0039-6028(01)01311-5
19.
Habelitz
,
S.
,
Marshall
,
S. J.
,
Marshall
,
G. W.
, and
Balooch
,
M.
,
2001
, “
Mechanical Properties of Human Dental Enamel on the Nanometre Scale
,”
Arch. Oral Biol.
,
46
(
2
), pp.
173
183
.10.1016/S0003-9969(00)00089-3
20.
Loch
,
C.
,
Schwass
,
D. R.
,
Kieser
,
J. A.
, and
Fordyce
,
R. E.
,
2013
, “
Use of Micro-Computed Tomography for Dental Studies in Modern and Fossil Odontocetes: Potential Applications and Limitations
,”
NAMMCOSP
, 10.10.7557/3.2616
21.
Toledano
,
M.
,
Osorio
,
R.
,
Perdigao
,
J.
,
Rosales
,
J. I.
,
Thompson
,
J. Y.
, and
Cabrerizo-Vilchez
,
M. A.
,
1999
, “
Effect of Acid Etching and Collagen Removal on Dentin Wettability and Roughness
,”
J. Biomed. Mater. Res.
,
47
(
2
), pp.
198
203
.10.1002/(SICI)1097-4636(199911)47:2<198::AID-JBM9>3.0.CO;2-L
22.
Sauro
,
S.
,
Faus-Matoses
,
V.
,
Makeeva
,
I.
,
Nuñez Martí
,
J. M.
,
Gonzalez Martínez
,
R.
,
García Bautista
,
J. A.
, and
Faus-Llácer
,
V.
,
2018
, “
Effects of Polyacrylic Acid Pre-Treatment on Bonded-Dentine Interfaces Created With a Modern Bioactive Resin-Modified Glass Ionomer Cement and Subjected to Cycling Mechanical Stress
,”
Materials
,
11
(
10
), p.
1884
.10.3390/ma11101884
You do not currently have access to this content.