Abstract

Due to the global pandemic in 2020, rehabilitation services had to adapt to virtual care to meet the needs of patients with a diversity of upper extremity disorders and injuries, from simple fingertip injuries to replanted extremities, while mitigating the spread of COVID-19. For patients who require occupational therapy in their rehabilitation, teleoperated robotic care can fulfill this need. Moreover, some clinical studies show that incorporating the active intention of patients into rehabilitation training enhances the effectiveness of therapies. This research aims to develop a bilateral impedance controller with a Franka Emika 7DOF (degree-of-freedom) articulated robot using matlab, facilitating upper limb occupational therapy. Through this setup, the Franka robot will lead patients through various therapeutic exercises based on their motion intention, such as a pick-and-place exercise. The exercises' efficacy is assessed through evaluations of torque, muscle strength, and jerking performance. During patients' rehabilitation exercises with the Franka robot, we anticipate observing decreased muscle activity alongside a smooth, assist-as-needed (AAN) trajectory. This method will allow a patient to perform complex movements essential for daily activities quicker than traditional occupational therapy.

References

1.
Javadinasr
,
M.
,
Magassy
,
T. B.
,
Rahimi
,
E.
,
Davatgari
,
A.
,
Salon
,
D.
,
Bhagat-Conway
,
M. W.
, and
Chauhan
,
R. S.
, et al.,
2021
, “
The Enduring Effects of Covid-19 on Travel Behavior in the United States: A Panel Study on Observed and Expected Changes in Telecommuting, Mode Choice, Online Shopping and Air Travel
,” preprint
arXiv:2109.07988
.10.48550/arXiv.2109.07988
2.
Reddy
,
A.
,
Resnik
,
L.
,
Freburger
,
J.
,
Ciolek
,
D. E.
,
Gifford
,
D. R.
,
Whitten
,
M. J.
, and
Baier
,
R. R.
,
2021
, “
Rapid Changes in the Provision of Rehabilitation Care in Post-Acute and Long-Term Care Settings During the Covid-19 Pandemic
,”
J. Am. Med. Directors Assoc.
,
22
(
11
), pp.
2240
2244
.10.1016/j.jamda.2021.08.022
3.
Martinez-Hernandez
,
U.
,
Firouzy
,
S.
,
Mehryar
,
P.
,
Meng
,
L.
,
Childs
,
C.
,
Buis
,
A.
, and
Dehghani-Sanij
,
A. A.
,
2023
, “
Human-in-the-Loop Layered Architecture for Control of a Wearable Ankle–Foot Robot
,”
Rob. Auton. Syst.
,
161
, p.
104353
.10.1016/j.robot.2022.104353
4.
Fazli
,
E.
,
Rakhtala
,
S. M.
,
Mirrashid
,
N.
, and
Karimi
,
H. R.
,
2022
, “
Real-Time Implementation of a Super Twisting Control Algorithm for an Upper Limb Wearable Robot
,”
Mechatronics
,
84
, p.
102808
.10.1016/j.mechatronics.2022.102808
5.
Chen
,
Z.
,
Guo
,
Q.
,
Yan
,
Y.
, and
Shi
,
Y.
,
2022
, “
Model Identification and Adaptive Control of Lower Limb Exoskeleton Based on Neighborhood Field Optimization
,”
Mechatronics
,
81
, p.
102699
.10.1016/j.mechatronics.2021.102699
6.
Taherifar
,
A.
,
Vossoughi
,
G.
, and
Ghafari
,
A. S.
,
2018
, “
Assistive-Compliant Control of Wearable Robots for Partially Disabled Individuals
,”
Control Eng. Pract.
,
74
, pp.
177
190
.10.1016/j.conengprac.2018.02.004
7.
Theurel
,
J.
,
Desbrosses
,
K.
,
Roux
,
T.
, and
Savescu
,
A.
,
2018
, “
Physiological Consequences of Using an Upper Limb Exoskeleton During Manual Handling Tasks
,”
Appl. Ergon.
,
67
, pp.
211
217
.10.1016/j.apergo.2017.10.008
8.
Raghavan
,
P.
,
2022
, “
Framework for the Treatment of Spasticity and Muscle Stiffness
,”
Spasticity and Muscle Stiffness: Restoring Form and Function
,
Springer International Publishing
, Cham, pp.
155
167
.
9.
Li
,
X.
,
Liu
,
J.
,
Li
,
S.
,
Wang
,
Y.-C.
, and
Zhou
,
P.
,
2014
, “
Examination of Hand Muscle Activation and Motor Unit Indices Derived From Surface EMG in Chronic Stroke
,”
IEEE Trans. Biomed. Eng.
,
61
(
12
), pp.
2891
2898
.10.1109/TBME.2014.2333034
10.
Van Harlinger
,
W.
,
Blalock
,
L.
, and
Merritt
,
J. L.
,
2015
, “
Upper Limb Strength: Study Providing Normative Data for a Clinical Handheld Dynamometer
,”
PMR
,
7
(
2
), pp.
135
140
.10.1016/j.pmrj.2014.09.007
11.
Spong
,
M. W.
, and
Vidyasagar
,
M.
,
2008
,
Robot Dynamics and Control
,
John Wiley & Sons
, Hoboken, NJ.
12.
Gaz
,
C.
,
Cognetti
,
M.
,
Oliva
,
A.
,
Giordano
,
P. R.
, and
De Luca
,
A.
,
2019
, “
Dynamic Identification of the Franka Emika Panda Robot With Retrieval of Feasible Parameters Using Penalty-Based Optimization
,”
IEEE Rob. Autom. Lett.
,
4
(
4
), pp.
4147
4154
.10.1109/LRA.2019.2931248
13.
Arteaga
,
M. A.
, and
Gutierrez-Giles
,
A.
,
2023
, “
On the Robustness of Force Estimation Methods for Robot Manipulators: An Experimental Study
,”
J. Franklin Inst.
,
360
(
16
), pp.
11705
11735
.10.1016/j.jfranklin.2023.09.015
14.
Li
,
Z.
,
Hayashibe
,
M.
,
Fattal
,
C.
, and
Guiraud
,
D.
,
2014
, “
Muscle Fatigue Tracking With Evoked EMG Via Recurrent Neural Network: Toward Personalized Neuroprosthetics
,”
IEEE Comput. Intell. Mag.
,
9
(
2
), pp.
38
46
.10.1109/MCI.2014.2307224
15.
Pesenti
,
M.
,
Alkhoury
,
Z.
,
Bednarczyk
,
M.
,
Omran
,
H.
, and
Bayle
,
B.
,
2019
, “
Linear Parameter-Varying Identification of the EMG–Force Relationship of the Human Arm
,” 2019 28th IEEE International Conference on Robot and Human Interactive Communication (
RO-MAN
), New Delhi, India, Oct. 14–18, pp.
1
6
.10.1109/RO-MAN46459.2019.8956388
You do not currently have access to this content.