Abstract

The horse racing industry, despite its financial significance, grapples with significant welfare issues, particularly stress fractures in racehorses due to rigorous training and competition. Third metacarpal (MC3) bone fractures, constituting about one-third of all limb fractures, severely impact horse health, performance, and welfare. The frequent occurrence of condylar fractures in the MC3, often resulting in bone comminution and complex fragmentation, poses high risks—sometimes necessitating euthanasia, and complicates the management and recovery processes for the rest. There is a lack of comprehensive methods for quantitatively determining fracture risks in horses, with strain measurements on the MC3 bone during racing conditions showing promise as an indicator of high loads and potential fracture risks. The primary long-term objective of this research is to develop implantable sensing technologies that can identify early indicators of potential failure, allowing for proactive management of horse health and minimizing fracture risks. This study investigated the mechanical properties of MC3 bones under high compressive loads using a fixture that secured the bone and mimicked natural conditions. Six MC3 bones from euthanized horses were instrumented with 350 Ω strain gauge rosettes at four key locations: Lateral Condyle (CondL), Medial Condyle (CondM), Dorsal DistoLateral (DisL), and Dorsal DistoMedial (DisM). Each bone underwent a preloading phase and five cycles of 12 kN sinusoidal loading to replicate galloping forces. Strain patterns were observed before and after introducing an artificial slot in the lateral condylar groove to simulate a fatigue crack. A strong correlation was found between load and minimum principal strain in both intact and fatigue crack-induced (FCI) bones, with R-squared values over 0.99. Post-FCI, 83% of bones exhibited an increase in the minimum principal strain-load response slope, indicating uniform changes in material behavior. Additionally, a rise in post-FCI y-intercept values across MC3 locations indicated higher initial strain and possible changes in bone properties.

References

1.
Hitchens
,
P. L.
,
Morrice-West
,
A. V.
,
Stevenson
,
M. A.
, and
Whitton
,
R. C.
,
2019
, “
Meta-Analysis of Risk Factors for Racehorse Catastrophic Musculoskeletal Injury in Flat Racing
,”
Vet. J.
,
245
, pp.
29
40
.10.1016/j.tvjl.2018.11.014
2.
Parkin
,
T.
,
Clegg
,
P.
,
French
,
N.
,
Proudman
,
C.
,
Riggs
,
C.
,
Singer
,
E.
,
Webbon
,
P.
, and
Morgan
,
K.
,
2004
, “
Horse‐Level Risk Factors for Fatal Distal Limb Fracture in Racing Thoroughbreds in the UK
,”
Equine Vet. J.
,
36
(
6
), pp.
513
519
.10.2746/0425164044877387
3.
Stover
,
S. M.
,
2015
, “
Stress Fracture Diagnosis in Racehorses
,”
Robinson's Current Therapy in Equine Medicine
, WB Saunders, St. Louis, MI, pp.
879
885
.
4.
Sarrafian
,
T. L.
,
Case
,
J. T.
,
Kinde
,
H.
,
Daft
,
B. M.
,
Read
,
D. H.
,
Moore
,
J. D.
,
Uzal
,
F. A.
, and
Stover
,
S. M.
,
2012
, “
Fatal Musculoskeletal Injuries of Quarter Horse Racehorses: 314 Cases (1990–2007
,”
J. Am. Vet. Med. Assoc.
,
241
(
7
), pp.
935
942
.10.2460/javma.241.7.935
5.
Schneider
,
R. K.
, and
Sampson
,
S. N.
,
2019
, “
Fractures of the Third Metacarpal/Metatarsal Diaphysis and Metaphysis
,”
Equine Fract. Repair
, Second edition, pp.
436
451
.10.1002/9781119108757
6.
Lusi
,
C. M.
, and
Davies
,
H. M.
,
2018
,
Fascial Anatomy of the Equine Forelimb
,
CRC Press
, Boca Raton, FL.
7.
Wright
,
I.
,
2022
, “
Fractures of the Distal Condyles of the Third Metacarpal and Third Metatarsal Bones
,”
Fractures in the Horse
, John Wiley & Sons, Hoboken, NJ, pp.
445
484
.
8.
Johnson
,
B. J.
,
Stover
,
S. M.
,
Daft
,
B. M.
,
Kinde
,
H.
,
Read
,
D. H.
,
Barr
,
B. C.
,
Anderson
,
M.
, et al.,
1994
, “
Causes of Death in Racehorses Over a 2 Year Period
,”
Equine Vet. J.
,
26
(
4
), pp.
327
330
.10.1111/j.2042-3306.1994.tb04395.x
9.
Nixon
,
A. J.
,
2020
,
Equine Fracture Repair
, 2nd ed.,
Wiley Blackwell
,
Hoboken, NJ
.
10.
Bergstrom
,
T. C.
,
Spriet
,
M.
,
Carpenter
,
R. S.
,
Jacques
,
K. L.
, and
Stover
,
S. M.
,
2024
, “
Condylar Fracture Location is Correlated to Exercise History in Thoroughbred Racehorses
,”
Equine Vet. J.
, epub.10.1111/evj.14091
11.
Clarke
,
E. J.
,
Gillen
,
A.
,
Turlo
,
A.
, and
Peffers
,
M. J.
,
2021
, “
An Evaluation of Current Preventative Measures Used in Equine Practice to Maintain Distal Forelimb Functionality: A Mini Review
,”
Front. Vet. Sci.
,
8
, p.
758970
.10.3389/fvets.2021.758970
12.
Colgate
,
V. A.
,
Marr
,
C. M.
,
Carpenter
,
R.
,
Kawcak
,
C.
,
Muir
,
P.
,
Palmer
,
S.
,
Parkin
,
T.
, et al.,
2020
, “
Science‐in‐Brief: Risk Assessment for Reducing Injuries of the Fetlock Bones in Thoroughbred Racehorses
,”
Equine Vet. J.
,
52
(
4
), pp.
482
488
.10.1111/evj.13273
13.
Archer
,
D.
,
Boswell
,
J.
,
Voute
,
L.
, and
Clegg
,
P.
,
2007
, “
Skeletal Scintigraphy in the Horse: Current Indications and Validity as a Diagnostic Test
,”
Vet. J.
,
173
(
1
), pp.
31
44
.10.1016/j.tvjl.2005.10.006
14.
Ross
,
M.
,
1998
, “
Scintigraphic and Clinical Findings in the Standardbred Metatarsophalangeal Joint: 114 Cases (1993–1995)
,”
Equine Vet. J.
,
30
(
2
), pp.
131
138
.10.1111/j.2042-3306.1998.tb04472.x
15.
Liley
,
H.
,
Zhang
,
J.
,
Firth
,
E. C.
,
Fernandez
,
J. W.
, and
Besier
,
T. F.
,
2018
, “
Statistical Modeling of the Equine Third Metacarpal Bone Incorporating Morphology and Bone Mineral Density
,”
Plos One
,
13
(
6
), p.
e0194406
.10.1371/journal.pone.0194406
16.
Morgan
,
J. W.
,
Santschi
,
E. M.
,
Zekas
,
L. J.
,
Scollay‐Ward
,
M. C.
,
Markel
,
M. D.
,
Radtke
,
C. L.
,
Sample
,
S. J.
,
Keuler
,
N. S.
, and
Muir
,
P.
,
2006
, “
Comparison of Radiography and Computed Tomography to Evaluate Metacarpo/Metatarsophalangeal Joint Pathology of Paired Limbs of Thoroughbred Racehorses With Severe Condylar Fracture
,”
Vet. Surg.
,
35
(
7
), pp.
611
617
.10.1111/j.1532-950X.2006.00198.x
17.
Tranquille
,
C.
,
Murray
,
R.
, and
Parkin
,
T.
,
2017
, “
Can we Use Subchondral Bone Thickness on High‐Field Magnetic Resonance Images to Identify Thoroughbred Racehorses at Risk of Catastrophic Lateral Condylar Fracture?
,”
Equine Vet. J.
,
49
(
2
), pp.
167
171
.10.1111/evj.12574
18.
Pye
,
J.
,
Spriet
,
M.
,
O'Brion
,
J.
,
Carpenter
,
R.
,
Blea
,
J. A.
, and
Dowd
,
J. P.
,
2022
, “
Longitudinal Monitoring of Fetlock Lesions in Thoroughbred Racehorses Using Standing 18F–Sodium Fluoride Positron Emission Tomography
,”
Am. J. Vet. Res.
,
83
(
10
).10.2460/ajvr.22.03.0062
19.
Biewener
,
A. A.
,
Thomason
,
J.
,
Goodship
,
A.
, and
Lanyon
,
L. E.
,
1983
, “
Bone Stress in the Horse Forelimb During Locomotion at Different Gaits: A Comparison of Two Experimental Methods
,”
J. Biomech.
,
16
(
8
), pp.
565
576
.10.1016/0021-9290(83)90107-0
20.
Ozyigit
,
G.
,
Yildiz
,
B.
, and
Ozcan
,
R.
,
2011
, “
Strain Analysis of the Equine Metacarpal Bone Diaphysis
,”
J. Anim. Vet. Adv.
,
10
(
16
), pp.
2193
2197
.10.3923/javaa.2011.2193.2197
21.
Singer
,
E.
,
Garcia
,
T.
, and
Stover
,
S.
,
2013
, “
How Do Metacarpophalangeal Joint Extension, Collateromotion and Axial Rotation Influence Dorsal Surface Strains of the Equine Proximal Phalanx at Different Loads in Vitro?
,”
J. Biomech.
,
46
(
4
), pp.
738
744
.10.1016/j.jbiomech.2012.11.028
22.
Les
,
C. M.
,
Stover
,
S. M.
,
Taylor
,
K. T.
,
Keyak
,
J. H.
, and
Willits
,
N. H.
,
1998
, “
Ex Vivo Simulation of in Vivo Strain Distributions in the Equine Metacarpus
,”
Equine Vet. J.
,
30
(
3
), pp.
260
266
.10.1111/j.2042-3306.1998.tb04498.x
23.
Moreira
,
R. C.
,
Pereira
,
C. A. M.
,
Frazão
,
P. J. R.
,
Selim
,
M. B.
,
Da Silva
,
L. C. L. C.
, and
Do Valle De Zoppa
,
A. L.
,
2012
, “
Evaluation of Bone Biomechanical Properties in Different Regions of the Equine Third Metacarpus
,”
J. Musculoskeletal Res.
,
15
(
3
), p.
1250017
.10.1142/S0218957712500170
24.
Fradinho
,
M. J.
,
Vale
,
A. C.
,
Bernardes
,
N.
,
Caldeira
,
R. M.
,
Vaz
,
M. F.
, and
Ferreira-Dias
,
G.
,
2015
, “
Biomechanical Properties of the Equine Third Metacarpal Bone: in Vivo Quantitative Ultrasonography Versus Ex Vivo Compression and Bending Techniques
,”
J. Equine Vet. Sci.
,
35
(
3
), pp.
198
205
.10.1016/j.jevs.2014.12.016
25.
Setterbo
,
J. J.
,
Garcia
,
T. C.
,
Campbell
,
I. P.
,
Reese
,
J. L.
,
Morgan
,
J. M.
,
Kim
,
S. Y.
,
Hubbard
,
M.
, and
Stover
,
S. M.
,
2009
, “
Hoof Accelerations and Ground Reaction Forces of Thoroughbred Racehorses Measured on Dirt, Synthetic, and Turf Track Surfaces
,”
Am. J. Vet. Res.
,
70
(
10
), pp.
1220
1229
.10.2460/ajvr.70.10.1220
26.
Singer
,
E.
,
Garcia
,
T.
, and
Stover
,
S.
,
2021
, “
How Does Bone Strain Vary Between the Third Metacarpal and the Proximal Phalangeal Bones of the Equine Distal Limb?
,”
J. Biomech.
,
123
, p.
110455
.10.1016/j.jbiomech.2021.110455
27.
Brama
,
P.
,
Karssenberg
,
D.
,
Barneveld
,
A.
, and
Van Weeren
,
P.
,
2001
, “
Contact Areas and Pressure Distribution on the Proximal Articular Surface of the Proximal Phalanx Under Sagittal Plane Loading
,”
Equine Vet. J.
,
33
(
1
), pp.
26
32
.10.2746/042516401776767377
28.
Dubois
,
M. S.
,
Morello
,
S.
,
Rayment
,
K.
,
Markel
,
M. D.
,
Vanderby
,
R.
, Jr.
,
Kalscheur
,
V. L.
,
Hao
,
Z.
,
McCabe
,
R. P.
,
Marquis
,
P.
, and
Muir
,
P.
,
2014
, “
Computed Tomographic Imaging of Subchondral Fatigue Cracks in the Distal End of the Third Metacarpal Bone in the Thoroughbred Racehorse Can Predict Crack Micromotion in an Ex-Vivo Model
,”
PloS One
,
9
(
7
), p.
e101230
.10.1371/journal.pone.0101230
29.
Shahar
,
R.
,
Zaslansky
,
P.
,
Barak
,
M.
,
Friesem
,
A.
,
Currey
,
J.
, and
Weiner
,
S.
,
2007
, “
Anisotropic Poisson's Ratio and Compression Modulus of Cortical Bone Determined by Speckle Interferometry
,”
J. Biomech.
,
40
(
2
), pp.
252
264
.10.1016/j.jbiomech.2006.01.021
30.
Cuff
,
A. R.
,
Bright
,
J. A.
, and
Rayfield
,
E. J.
,
2015
, “
Validation Experiments on Finite Element Models of an Ostrich (Struthio Camelus) Cranium
,”
PeerJ
,
3
, p.
e1294
.10.7717/peerj.1294
31.
Dzialo
,
C.
,
Wood
,
S. A.
,
Berthaume
,
M.
,
Smith
,
A.
,
Dumont
,
E. R.
,
Benazzi
,
S.
,
Weber
,
G. W.
,
Strait
,
D. S.
, and
Grosse
,
I. R.
,
2014
, “
Functional Implications of Squamosal Suture Size in Paranthropus Boisei
,”
Am. J. Phys. Anthropol.
,
153
(
2
), pp.
260
268
.10.1002/ajpa.22427
32.
Fan
,
R.
,
Liu
,
J.
, and
Jia
,
Z.
,
2023
, “
Biomechanical Evaluation of Different Strain Judging Criteria on the Prediction Precision of Cortical Bone Fracture Simulation Under Compression
,”
Front. Bioeng. Biotechnol.
,
11
, p.
1168783
.10.3389/fbioe.2023.1168783
33.
Le Jeune
,
S. S.
,
Macdonald
,
M. H.
,
Stover
,
S. M.
,
Taylor
,
K. T.
, and
Gerdes
,
M.
,
2003
, “
Biomechanical Investigation of the Association Between Suspensory Ligament Injury and Lateral Condylar Fracture in Thoroughbred Racehorses
,”
Vet. Surg.
,
32
(
6
), pp.
585
597
.10.1111/j.1532-950X.2003.00585.x
You do not currently have access to this content.