Abstract

The growing popularity of smart healthcare and novel innovations in human movement monitoring systems (HMMS) open doors for diagnosing various health conditions, including neurological disorders, musculoskeletal system problems, mobility limitations associated with aging, and the oversight of rehabilitation programs. This paper discusses the technical challenges, potential applications, and prospects for conceptual Digital Twin (DT) technology in Internet of Things (IoT)-based human monitoring systems, underscoring its role in revolutionizing rehabilitation strategies. Current studies emphasize the possibilities of the IoT and Digital Twin technologies across various sectors, including healthcare. However, given its use in real-time monitoring and follow-up of end-to-end rehabilitation programs, it is still emerging. Integrating Digital Twin into the existing IoT-based human movement monitoring system facilitates the handling of large amounts of data, supports analytics, and provides a platform for integrating additional services. This proposed framework incorporates inertia or wearable sensors to collect data on human activities during rehabilitation, utilizes fast Fourier transform for feature extraction, and employs advanced machine learning (ML) algorithms for activity recognition along with artificial intelligence (AI) for predictive analytics. Furthermore, it implements a data-driven virtual model at the cloud services that mirror the physical behaviors of IoT systems for enhanced real-time monitoring and tuning of the system based on personal requirements.

References

1.
Elayan
,
H.
,
Aloqaily
,
M.
, and
Guizani
,
M.
,
2021
, “
Digital Twin for Intelligent Context-Aware IoT Healthcare Systems
,”
IEEE Internet Things J.
,
8
(
23
), pp.
16749
16757
.10.1109/JIOT.2021.3051158
2.
Al-Ali
,
A.-R.
,
Gupta
,
R.
,
Zaman Batool
,
T.
,
Landolsi
,
T.
,
Aloul
,
F.
, and
Al Nabulsi
,
A.
,
2020
, “
Digital Twin Conceptual Model Within the Context of Internet of Things
,”
Future Internet
,
12
(
10
), p.
163
.10.3390/fi12100163
3.
Minerva
,
R.
,
Lee
,
G. M.
, and
Crespi
,
N.
,
2020
, “
Digital Twin in the IoT Context: A Survey on Technical Features, Scenarios, and Architectural Models
,”
Proc. IEEE
,
108
(
10
), pp.
1785
1824
.10.1109/JPROC.2020.2998530
4.
Khan
,
S.
,
Arslan
,
T.
, and
Ratnarajah
,
T.
,
2022
, “
Digital Twin Perspective of Fourth Industrial and Healthcare Revolution
,”
IEEE Access
,
10
, pp.
25732
25754
.10.1109/ACCESS.2022.3156062
5.
Erol
,
T.
,
Mendi
,
A. F.
, and
Doğan
,
D.
,
2020
, “
The Digital Twin Revolution in Healthcare
,” 2020 Fourth International Symposium on Multidisciplinary Studies and Innovative Technologies (
ISMSIT
), Istanbul, Turkey, Oct. 22–24, pp.
1
7
.10.1109/ISMSIT50672.2020.9255249
6.
Al-Naime
,
K.
,
Al-Anbuky
,
A.
, and
Mawston
,
G.
,
2020
, “
Human Movement Monitoring and Analysis for Prehabilitation Process Management
,”
J. Sens. Actuator Networks
,
9
(
1
), p.
9
.10.3390/jsan9010009
7.
Liu
,
Y.
,
Zhang
,
L.
,
Yang
,
Y.
,
Zhou
,
L.
,
Ren
,
L.
,
Wang
,
F.
,
Liu
,
R.
,
Pang
,
Z.
, and
Deen
,
M. J.
,
2019
, “
A Novel Cloud-Based Framework for the Elderly Healthcare Services Using Digital Twin
,”
IEEE Access
,
7
, pp.
49088
49101
.10.1109/ACCESS.2019.2909828
8.
Baker
,
S. B.
,
Xiang
,
W.
, and
Atkinson
,
I.
,
2017
, “
Internet of Things for Smart Healthcare: Technologies, Challenges, and Opportunities
,”
IEEE Access
,
5
, pp.
26521
26544
.10.1109/ACCESS.2017.2775180
9.
Lilley
,
R.
,
de Graaf
,
B.
,
Kool
,
B.
,
Davie
,
G.
,
Reid
,
P.
,
Dicker
,
B.
,
Civil
,
I.
,
Ameratunga
,
S.
, and
Branas
,
C.
,
2019
, “
Geographical and Population Disparities in Timely Access to Prehospital and Advanced Level Emergency Care in New Zealand: A Cross-Sectional Study
,”
BMJ Open,
9
(
7
), p.
e026026
.10.1136/bmjopen-2018-026026
10.
Nasr
,
M.
,
Islam
,
M. M.
,
Shehata
,
S.
,
Karray
,
F.
, and
Quintana
,
Y.
,
2021
, “
Smart Healthcare in the Age of AI: Recent Advances, Challenges, and Future Prospects
,”
IEEE Access
,
9
, pp.
145248
145270
.10.1109/ACCESS.2021.3118960
11.
Alshehri
,
F.
, and
Muhammad
,
G.
,
2021
, “
A Comprehensive Survey of the Internet of Things (IoT) and AI-Based Smart Healthcare
,”
IEEE Access
,
9
, pp.
3660
3678
.10.1109/ACCESS.2020.3047960
12.
Al Naime
,
K.
,
Al-Anbuky
,
A.
, and
Mawston
,
G.
,
2022
, “
IoT for Movement Recognition and Prehabilitation Support System
,” 2022 27th Asia Pacific Conference on Communications (
APCC
), Jeju Island, Korea, Oct. 19–21, pp.
447
452
.10.1109/APCC55198.2022.9943743
13.
Gupta
,
A.
, and
Al-Anbuky
,
A.
,
2021
, “
IoT-Based Patient Movement Monitoring: The Post-Operative Hip Fracture Rehabilitation Model
,”
Future Internet
,
13
(
8
), p.
195
.10.3390/fi13080195
14.
Tyagi
,
S.
,
Agarwal
,
A.
, and
Maheshwari
,
P.
,
2016
, “
A Conceptual Framework for IoT-Based Healthcare System Using Cloud Computing
,”
2016 Sixth International Conference—Cloud System and Big Data Engineering (Confluence)
, Noida, India, Jan. 14–15, pp.
503
507
.10.1109/CONFLUENCE.2016.7508172
15.
Gupta
,
A.
,
Al-Anbuky
,
A.
, and
McNair
,
P.
,
2018
, “
Activity Classification Feasibility Using Wearables: Considerations for Hip Fracture
,”
J. Sens. Actuator Networks
,
7
(
4
), p.
54
.10.3390/jsan7040054
16.
Lateef
,
R. A.
, and
Abbas
,
A. R.
,
2022
, “
Human Activity Recognition Using Smartwatch and Smartphone: A Review on Methods, Applications, and Challenges
,”
Iraqi J. Sci.
,
63
(
1
), pp.
363
379
.10.24996/ijs.2022.63.1.34
17.
Sukor
,
A. A.
,
Zakaria
,
A.
, and
Rahim
,
N. A.
,
2018
, “
Activity Recognition Using Accelerometer Sensor and Machine Learning Classifiers
,” 2018 IEEE 14th International Colloquium on Signal Processing & Its Applications (
CSPA
), Penang, Malaysia, Mar. 9–10, pp.
233
238
.10.1109/CSPA.2018.8368718
18.
Khan
,
Y. A.
,
Imaduddin
,
S.
,
Prabhat
,
R.
, and
Wajid
,
M.
,
2022
, “
Classification of Human Motion Activities Using Mobile Phone Sensors and Deep Learning Model
,” 2022 Eighth International Conference on Advanced Computing and Communication Systems (
ICACCS
), Vol. 1, Coimbatore, India, Mar. 25–26, pp.
1381
1386
.10.1109/ICACCS54159.2022.9785009
19.
De Vito
,
L.
,
Lamonaca
,
F.
,
Mazzilli
,
G.
,
Riccio
,
M.
,
Carnì
,
D. L.
, and
Sciammarella
,
P. F.
,
2017
, “
An IoT-Enabled Multi-Sensor Multi-User System for Human Motion Measurements
,” 2017 IEEE International Symposium on Medical Measurements and Applications (
MeMeA
), Rochester, MN, May 7–10, pp.
210
215
.10.1109/MeMeA.2017.7985877
20.
Huang
,
H.
,
Zhao
,
L.
, and
Wu
,
Y.
,
2023
, “
An IoT and Machine Learning Enhanced Framework for Real-Time Digital Human Modeling and Motion Simulation
,”
Comput. Commun.
,
212
, pp.
78
89
.10.1016/j.comcom.2023.09.024
21.
Grieves
,
M.
, and
Vickers
,
J.
,
2017
, “
Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems
,” J. Kahlen, S. Flumerfelt, and A. Alves, eds., Transdisciplinary Perspectives on Complex Systems, Springer, Cham, pp. 85–113.10.1007/978-3-319-38756-7_4
22.
Qi
,
Q.
,
Tao
,
F.
,
Hu
,
T.
,
Anwer
,
N.
,
Liu
,
A.
,
Wei
,
Y.
,
Wang
,
L.
, and
Nee
,
A. Y.
,
2021
, “
Enabling Technologies and Tools for Digital Twin
,”
J. Manuf. Syst.
,
58
, pp.
3
21
.10.1016/j.jmsy.2019.10.001
23.
Liu
,
M.
,
Fang
,
S.
,
Dong
,
H.
, and
Xu
,
C.
,
2021
, “
Review of Digital Twin About Concepts, Technologies, and Industrial Applications
,”
J. Manuf. Syst.
,
58
, pp.
346
361
.10.1016/j.jmsy.2020.06.017
24.
Zhang
,
J.
,
Li
,
L.
,
Lin
,
G.
,
Fang
,
D.
,
Tai
,
Y.
, and
Huang
,
J.
,
2020
, “
Cyber Resilience in Healthcare Digital Twin on Lung Cancer
,”
IEEE Access
,
8
, pp.
201900
201913
.10.1109/ACCESS.2020.3034324
25.
Iliuţă
,
M.-E.
,
Moisescu
,
M.-A.
,
Pop
,
E.
,
Ionita
,
A.-D.
,
Caramihai
,
S.-I.
, and
Mitulescu
,
T.-C.
,
2024
, “
Digital Twin—A Review of the Evolution From Concept to Technology and Its Analytical Perspectives on Applications in Various Fields
,”
Appl. Sci.
,
14
(
13
), p.
5454
.10.3390/app14135454
26.
A. K.
Tyagi
and
Richa
,
2023
, “
Digital Twin Technology: Opportunities and Challenges for Smart Era’s Applications
,”
Proceedings of the 2023 15th International Conference on Contemporary Computing
(
ICE-2023
), Noida, India, Aug. 3–5, pp.
328
336
.10.1145/3607947.3608015
27.
Pracucci
,
A.
,
2024
, “
Designing Digital Twin With IoT and AI in Warehouse to Support Optimization and Safety in the Engineer-to-Order Manufacturing Process for Prefabricated Building Products
,”
Appl. Sci.
,
14
(
15
), p.
6835
.10.3390/app14156835
28.
Muka
,
E.
, and
Marinova
,
G.
,
2024
, “
Digital Twins to Monitor IoT Devices for Green Transformation of University Campus
,” 2024 International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (
CoBCom
), Graz, Austria, July 9–11, pp.
1
6
.10.1109/CoBCom62281.2024.10631264
29.
Barricelli
,
B. R.
,
Casiraghi
,
E.
,
Gliozzo
,
J.
,
Petrini
,
A.
, and
Valtolina
,
S.
,
2020
, “
Human Digital Twin for Fitness Management
,”
IEEE Access
,
8
, pp.
26637
26664
.10.1109/ACCESS.2020.2971576
30.
Hassani
,
H.
,
Huang
,
X.
, and
MacFeely
,
S.
,
2022
, “
Impactful Digital Twin in the Healthcare Revolution
,”
Big Data Cognit. Comput.
,
6
(
3
), p.
83
.10.3390/bdcc6030083
31.
Johnson
,
Z.
, and
Saikia
,
M. J.
,
2024
, “
Digital Twins for Healthcare Using Wearables
,”
Bioengineering
,
11
(
6
), p.
606
.10.3390/bioengineering11060606
32.
Taylor
,
S. J.
,
Macal
,
C. M.
,
Matta
,
A.
,
Rabe
,
M.
,
Sanchez
,
S. M.
, and
Shao
,
G.
,
2023
, “
Enhancing Digital Twins With Advances in Simulation and Artificial Intelligence: Opportunities and Challenges
,” 2023 Winter Simulation Conference (
WSC
), San Antonio, TX, Dec. 10–13, pp.
3296
3310
.10.1109/WSC60868.2023.10408011
33.
Chen
,
J.
,
Wang
,
Z.
,
He
,
T.
,
Fang
,
B.
,
Li
,
C.
,
Fridenfalk
,
M.
, and
Lyu
,
Z.
,
2024
, “
Artificial Intelligence Empowered Digital Twins for ECG Monitoring in a Smart Home
,”
ACM Trans. Multimedia Comput., Commun. Appl.
, epub.10.1145/3672564
34.
Falkowski
,
P.
,
Osiak
,
T.
,
Wilk
,
J.
,
Prokopiuk
,
N.
,
Leczkowski
,
B.
,
Pilat
,
Z.
, and
Rzymkowski
,
C.
,
2023
, “
Study on the Applicability of Digital Twins for Home Remote Motor Rehabilitation
,”
Sensors
,
23
(
2
), p.
911
.10.3390/s23020911
You do not currently have access to this content.