Abstract

The current work is related to the numerical investigation of non-Fourier heat transfer inside the short-pulsed laser-irradiated axisymmetric soft tissue phantom. It utilizes the modified discrete ordinate method (DOM) to solve the transient radiative transfer equation (TRTE) for determining the intensity field. The laser energy absorbed by the soft tissue phantom behaves like a source in the Fourier/non-Fourier heat conduction model based-bioheat transfer equation (BHTE), which is solved by employing the finite volume method (FVM) to determine the temperature distribution. Despite the prevalent use of non-Fourier BHTE for this purpose, a second law analysis is considered crucial to detect any potential anomalies. Equilibrium entropy production rates (EPR) are initially computed based on classical irreversible thermodynamics (CIT), which may yield negative values, possibly contravening the second law. Consequently, the EPR based on CIT is adjusted using the extended irreversible thermodynamics (EIT) hypothesis to ensure positivity. After that, the current research findings are compared with the results from the literature, and found good agreement between them. Then, the independent study is performed to select the optimum grid size, control angle size, and time-step. A comparative analysis of results between the traditional Fourier and non-Fourier models has been performed. The impact of different parameters on the temperature fields and EPRs is discussed. The effect of the optical properties of the inhomogeneity on the temperature distribution has been investigated. This study may help to enhance the effectiveness of the laser-based photothermal therapy (PTT).

References

1.
Dewey
,
W. C.
,
Thrall
,
D. E.
, and
Gillette
,
E. L.
,
1977
, “
Hyperthermia and Radiation—A Selective Thermal Effect on Chronically Hypoxic Tumor Cells In Vivo
,”
Int. J. Radiat. Oncol.
,
2
(
1–2
), pp.
99
103
.10.1016/0360-3016(77)90013-X
2.
Adabbo
,
G.
,
Andreozzi
,
A.
,
Iasiello
,
M.
,
Netti
,
P.
, and
Vanoli
,
G.
,
2023
, “
A 3D Numerical Model of controlled drug delivery to Solid Tumor by Means of Mild Microwave Hyperthermia-Activated Thermo-Sensitive Liposomes
,”
Int. J. Therm. Sci.
,
193
, p.
108528
.10.1016/j.ijthermalsci.2023.108528
3.
Moll
,
X.
,
Fondevila
,
D.
,
García-Arnas
,
F.
,
Burdio
,
F.
,
Trujillo
,
M.
,
Irastorza
,
R. M.
,
Berjano
,
E.
, and
Andaluz
,
A.
,
2022
, “
Comparison of Two Radiofrequency-Based Hemostatic Devices: Saline-Linked Bipolar vs. cooled-Electrode Monopolar
,”
Int. J. Hyperth.
,
39
(
1
), pp.
1397
1407
.10.1080/02656736.2022.2140840
4.
Gupta
,
P.
, and
Srivastava
,
A.
,
2019
, “
Non-Fourier Transient Thermal Analysis of Biological Tissue Phantoms Subjected to High Intensity Focused Ultrasound
,”
Int. J. Heat Mass Transfer
,
136
, pp.
1052
1063
.10.1016/j.ijheatmasstransfer.2019.03.014
5.
Ahammed
,
M. E.
,
Yadav
,
A. K.
, and
Laxminidhi
,
T.
,
2024
, “
Numerical Study on Temperature Distribution During Magnetic Hyperthermia of Different Tumor Tissues
,”
J. Magn. Magn. Mater.
,
593
, p.
171868
.10.1016/j.jmmm.2024.171868
6.
Habash
,
R. W. Y.
,
Bansal
,
R.
,
Krewski
,
D.
, and
Alhafid
,
H. T.
,
2007
, “
Thermal Therapy, Part III: Ablation Techniques
,”
Crit. Rev. Biomed. Eng.
,
35
(
1–2
), pp.
37
121
.10.1615/CritRevBiomedEng.v35.i1-2.20
7.
Welch
,
A. J.
, and
van Gemert
,
M. J. C.
,
2011
,
Optical-Thermal Response of Laser-Irradiated Tissue
,
Springer
,
Dordrecht, The Netherlands
.
8.
Zhou
,
J.
,
Zhang
,
Y.
, and
Chen
,
J. K.
,
2009
, “
An Axisymmetric Dual-Phase-Lag Bioheat Model for Laser Heating of Living Tissues
,”
Int. J. Therm. Sci.
,
48
(
8
), pp.
1477
1485
.10.1016/j.ijthermalsci.2008.12.012
9.
Fanjul-Vélez
,
F.
,
Romanov
,
O. G.
, and
Arce-Diego
,
J. L.
,
2009
, “
Efficient 3D Numerical Approach for Temperature Prediction in Laser Irradiated Biological Tissues
,”
Comput. Biol. Med.
,
39
(
9
), pp.
810
817
.10.1016/j.compbiomed.2009.06.009
10.
Luo
,
Z.-T.
,
Wang
,
J.
,
Mao
,
F.-L.
,
Shen
,
L.
,
Wang
,
S.
, and
Zhang
,
H.
,
2020
, “
Investigation of Total Diffuse-Photon-Density-Wave Field in Semi-Infinite Turbid Media Based on the Extrapolated Beer–Lambert Law
,”
J. Appl. Phys.
,
127
, p.
123102
.10.1063/1.5144192
11.
Guo
,
Z.
,
Wan
,
S. K.
,
Kim
,
K.
, and
Kosaraju
,
C.
,
2003
, “
Comparing Diffusion Approximation With Radiation Transfer Analysis for Light Transport in Tissues
,”
Opt. Rev.
,
10
(
5
), pp.
415
421
.10.1007/s10043-003-0415-y
12.
Zhang
,
R.
,
Verkruysse
,
W.
,
Aguilar
,
G.
, and
Nelson
,
J. S.
,
2005
, “
Comparison of Diffusion Approximation and Monte Carlo Based Finite Element Models for Simulating Thermal Responses to Laser Irradiation in Discrete Vessels
,”
Phys. Med. Biol.
,
50
(
17
), pp.
4075
4086
.10.1088/0031-9155/50/17/011
13.
Guo
,
Z.
, and
Kim
,
K.
,
2003
, “
Ultrafast-Laser-Radiation Transfer in Heterogeneous Tissues With the Discrete-Ordinates Method
,”
Appl. Opt.
,
42
(
16
), pp.
2897
2905
.10.1364/AO.42.002897
14.
Bhowmik
,
A.
,
Repaka
,
R.
,
Mishra
,
S. C.
, and
Mitra
,
K.
,
2014
, “
Analysis of Radiative Signals From Normal and Malignant Human Skins Subjected to a Short-Pulse Laser
,”
Int. J. Heat Mass Transfer
,
68
, pp.
278
294
.10.1016/j.ijheatmasstransfer.2013.09.032
15.
Kumar
,
S.
, and
Srivastava
,
A.
,
2014
, “
Numerical Investigation of Thermal Response of Laser Irradiated Tissue Phantoms Embedded With Optical Inhomogeneities
,”
Int. J. Heat Mass Transfer
,
77
, pp.
262
277
.10.1016/j.ijheatmasstransfer.2014.05.012
16.
Modest
,
M. F.
,
2013
,
Radiative Heat Transfer
, 3rd ed.,
Academic Press
,
Oxford, UK
.
17.
Rath
,
P.
,
Mishra
,
S. C.
,
Mahanta
,
P.
,
Saha
,
U. K.
, and
Mitra
,
K.
,
2003
, “
Discrete Transfer Method Applied to Transient Radiative Transfer Problems in Participating Medium
,”
Numer. Heat Transfer, Part A
,
44
(
2
), pp.
183
197
.10.1080/713838195
18.
Badri
,
M. A.
,
Jolivet
,
P.
,
Rousseau
,
B.
, and
Favennec
,
Y.
,
2018
, “
High Performance Computation of Radiative Transfer Equation Using the Finite Element Method
,”
J. Comput. Phys.
,
360
, pp.
74
92
.10.1016/j.jcp.2018.01.027
19.
Chai
,
J. C.
,
Hsu
,
P.
, and
Lam
,
Y. C.
,
2004
, “
Three-Dimensional Transient Radiative Transfer Modeling Using the Finite Volume Method
,”
J. Quant. Spectrosc. Radiat. Transfer
,
86
(
3
), pp.
299
313
.10.1016/j.jqsrt.2003.08.008
20.
Patidar
,
S.
,
Kumar
,
S.
,
Srivastava
,
A.
, and
Singh
,
S.
,
2017
, “
Lattice Boltzmann Method-Based Solution of Radiative Transfer Equation for Investigating Light Propagation Through Laser-Irradiated Tissue Phantoms
,”
Int. Commun. Heat Mass Transfer
,
84
, pp.
144
149
.10.1016/j.icheatmasstransfer.2017.04.012
21.
Guo
,
Z.
, and
Kumar
,
S.
,
2002
, “
Three-Dimensional Discrete Ordinates Method in Transient Radiative Transfer
,”
J. Thermophys. Heat Transfer
,
16
(
3
), pp.
289
296
.10.2514/2.6689
22.
Chandrasekhar
,
S.
,
1960
,
Radiative Transfer
,
Dover Publications
,
New York
.
23.
Mishra
,
S. C.
,
Chugh
,
P.
,
Kumar
,
P.
, and
Mitra
,
K.
,
2006
, “
Development and Comparison of the DTM, the DOM and the FVM Formulations for the Short-Pulse Laser Transport Through a Participating Medium
,”
Int. J. Heat Mass Transfer
,
49
(
11–12
), pp.
1820
1832
.10.1016/j.ijheatmasstransfer.2005.10.043
24.
Mitra
,
K.
, and
Kumar
,
S.
,
1999
, “
Development and Comparison of Models for Light-Pulse Transport Through Scattering–Absorbing Media
,”
Appl. Opt.
,
38
(
1
), pp.
188
196
.10.1364/AO.38.000188
25.
Hunter
,
B.
, and
Guo
,
Z.
,
2011
, “
Comparison of the Discrete-Ordinates Method and the Finite Volume Method for Steady-State and Ultrafast Radiative Transfer Analysis in Cylindrical Coordinates
,”
Numer. Heat Transfer, Part B
,
59
(
5
), pp.
339
359
.10.1080/10407790.2011.572719
26.
Pennes
,
H. H.
,
1948
, “
Analysis of Tissue and Arterial Blood Temperatures
,”
J. Appl. Physiol.
,
1
(
2
), pp.
93
122
.10.1152/jappl.1948.1.2.93
27.
Jiao
,
J.
, and
Guo
,
Z.
,
2009
, “
Thermal Interaction of Short-Pulsed Laser Focused Beams With Skin Tissues
,”
Phys. Med. Biol.
,
54
(
13
), pp.
4225
4241
.10.1088/0031-9155/54/13/017
28.
Barletta
,
A.
, and
Zanchini
,
E.
,
1997
, “
Hyperbolic Heat Conduction and Local Equilibrium: A Second Law Analysis
,”
Int. J. Heat Mass Transfer
,
40
(
5
), pp.
1007
1016
.10.1016/0017-9310(96)00211-6
29.
Mitra
,
K.
,
Kumar
,
S.
,
Vedevarz
,
A.
, and
Moallemi
,
M. K.
,
1995
, “
Experimental Evidence of Hyperbolic Heat Conduction in Processed Meat
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
117
(
3
), pp.
568
573
.10.1115/1.2822615
30.
Roetzel
,
W.
,
Putra
,
N.
, and
Das
,
S. K.
,
2003
, “
Experiment and Analysis for Non-Fourier Conduction in Materials With Non-Homogeneous Inner Structure
,”
Int. J. Therm. Sci.
,
42
(
6
), pp.
541
552
.10.1016/S1290-0729(03)00020-6
31.
Antaki
,
P. J.
,
2005
, “
New Interpretation of Non-Fourier Heat Conduction in Processed Meat
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
127
(
2
), pp.
189
193
.10.1115/1.1844540
32.
Cattaneo
,
C.
,
1958
, “
A Form of Heat Conduction Equation Which Eliminates the Paradox of Instantaneous Propagation
,”
Compt. Rend.
,
247
, pp.
431
433
.https://typeset.io/papers/a-form-of-heat-conduction-equations-which-eliminates-the-4gvmur1p0o
33.
Vernotte
,
P.
,
1961
, “
Some Possible Complications in the Phenomena of Thermal Conduction
,”
Comp. Rend.
,
252
, pp.
2190
2191
.
34.
Liu
,
K.-C.
, and
Wang
,
J.-C.
,
2014
, “
Analysis of Thermal Damage to Laser Irradiated Tissue Based on the Dual-Phase-Lag Model
,”
Int. J. Heat Mass Transfer
,
70
, pp.
621
628
.10.1016/j.ijheatmasstransfer.2013.11.044
35.
Bai
,
C.
, and
Lavine
,
A. S.
,
1995
, “
On Hyperbolic Heat Conduction and the Second Law of Thermodynamics
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
117
(
2
), pp.
256
263
.10.1115/1.2822514
36.
Tzou
,
D. Y.
,
1995
, “
A Unified Field Approach for Heat Conduction From Macro- to Micro-Scales
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
117
(
1
), pp.
8
16
.10.1115/1.2822329
37.
Al-Nimr
,
M. A.
,
Naji
,
M.
, and
Arbaci
,
V. S.
,
2000
, “
Nonequilibrium Entropy Production Under the Effect of the Dual-Phase-Lag Heat Conduction Model
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
122
(
2
), pp.
217
223
.10.1115/1.521461
38.
Serdyukov
,
S. I.
,
2004
, “
Generalization of the Evolution Criterion in Extended Irreversible Thermodynamics
,”
Phys. Lett. A
,
324
(
4
), pp.
262
271
.10.1016/j.physleta.2004.02.068
39.
Xu
,
M.
,
2011
, “
Thermodynamic Basis of Dual-Phase-Lagging Heat Conduction
,”
ASME J. Heat Mass Transfer-Trans.
,
133
, p.
041401
.10.1115/1.4002983
40.
Askarizadeh
,
H.
,
Baniasadi
,
E.
, and
Ahmadikia
,
H.
,
2017
, “
Equilibrium and Non-Equilibrium Thermodynamic Analysis of High-Order Dual-Phase-Lag Heat Conduction
,”
Int. J. Heat Mass Transfer
,
104
, pp.
301
309
.10.1016/j.ijheatmasstransfer.2016.08.060
41.
Askarizadeh
,
H.
, and
Ahmadikia
,
H.
,
2018
, “
Extended Irreversible Thermodynamics Versus Second Law Analysis of High-Order Dual-Phase-Lag Heat Transfer
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
140
, p.
082003
.10.1115/1.4038851
42.
Shomali
,
Z.
,
Kovács
,
R.
,
Ván
,
P.
,
Kudinov
,
I. V.
, and
Ghazanfarian
,
J.
,
2022
, “
Lagging Heat Models in Thermodynamics and Bioheat Transfer: A Critical Review
,”
Continum Mech. Thermodyn.
,
34
(
3
), pp.
637
679
.10.1007/s00161-022-01096-6
43.
Jasiński
,
M.
,
Majchrzak
,
E.
, and
Turchan
,
L.
,
2016
, “
Numerical Analysis of the Interactions Between Laser and Soft Tissues Using Generalized Dual-Phase Lag Equation
,”
Appl. Math. Model.
,
40
(
2
), pp.
750
762
.10.1016/j.apm.2015.10.025
44.
Kumar
,
S.
, and
Srivastava
,
A.
,
2015
, “
Thermal Analysis of Laser-Irradiated Tissue Phantoms Using Dual Phase Lag Model Coupled With Transient Radiative Transfer Equation
,”
Int. J. Heat Mass Transfer
,
90
, pp.
466
479
.10.1016/j.ijheatmasstransfer.2015.06.077
45.
Patidar
,
S.
,
Kumar
,
S.
,
Srivastava
,
A.
, and
Singh
,
S.
,
2016
, “
Dual Phase Lag Model-Based Thermal Analysis of Tissue Phantoms Using Lattice Boltzmann Method
,”
Int. J. Therm. Sci.
,
103
, pp.
41
56
.10.1016/j.ijthermalsci.2015.12.011
46.
Kim
,
K.
, and
Guo
,
Z.
,
2007
, “
Multi-Time-Scale Heat Transfer Modeling of Turbid Tissues Exposed to Short-Pulsed Irradiations
,”
Comput. Methods Prog. Biomed.
,
86
(
2
), pp.
112
123
.10.1016/j.cmpb.2007.01.009
47.
Jaunich
,
M.
,
Raje
,
S.
,
Kim
,
K.
,
Mitra
,
K.
, and
Guo
,
Z.
,
2008
, “
Bio-Heat Transfer Analysis During Short Pulse Laser Irradiation of Tissues
,”
Int. J. Heat Mass Transfer
,
51
(
23–24
), pp.
5511
5521
.10.1016/j.ijheatmasstransfer.2008.04.033
48.
Kishore
,
P.
,
Kumar
,
S.
, and
Patel
,
V. M.
,
2022
, “
Conjugate Heat Transfer Analysis of Laser-Irradiated Cylindrical-Shaped Biological Tissue Embedded With the Optical Inhomogeneity
,”
Int. Commun. Heat Mass Transfer
,
137
, p.
106302
.10.1016/j.icheatmasstransfer.2022.106302
49.
Jou
,
D.
,
Casas-Vázquez
,
J.
, and
Lebon
,
G.
,
2010
,
Extended Irreversible Thermodynamics
, 4th ed.,
Springer
,
Berlin Heidelberg
.
50.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemishphere Publishing Corp
,
New York
.
51.
Kishore
,
P.
, and
Kumar
,
S.
,
2021
, “
Analytical Investigation of Non-Fourier Bioheat Transfer in the Axisymmetric Living Tissue Exposed to Pulsed Laser Heating Using Finite Integral Transform Technique
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
, p.
121201
.10.1115/1.4052155
52.
Liu
,
K.-C.
, and
Chen
,
H.-T.
,
2010
, “
Investigation for the Dual Phase Lag Behavior of Bio-Heat Transfer
,”
Int. J. Therm. Sci.
,
49
(
7
), pp.
1138
1146
.10.1016/j.ijthermalsci.2010.02.007
53.
Maillet
,
D.
,
2019
, “
A Review of the Models Using the Cattaneo and Vernotte Hyperbolic Heat Equation and Their Experimental Validation
,”
Int. J. Therm. Sci.
,
139
, pp.
424
432
.10.1016/j.ijthermalsci.2019.02.021
54.
Kumar
,
M.
,
Rai
., and
K. N.
,
Rajeev
,
2020
, “
A Study of Fractional Order Dual-Phase-Lag Bioheat Transfer Model
,”
J. Therm. Biol.
,
93
, p.
102661
.10.1016/j.jtherbio.2020.102661
You do not currently have access to this content.