Abstract

This paper mainly analyzed the application of inertial sensors in basketball posture analysis. The data of 20 basketball players in different postures were collected by Micro-electromechanical systems inertial sensors. The mean, variance, and skewness were taken as features to compare the performance of C4.5, random forest (RF), k-nearest neighbor, and support vector machine (SVM) algorithms in analyzing posture data. It was found that the classification accuracy of the k-nearest neighbor algorithm was around 90%, and the classification accuracy of C4.5, RF, and SVM algorithms was all above 90%. The classification accuracy of the RF algorithm was the highest (98.72%), which was significantly higher than C4.5 and SVM algorithms. The results verified the advantages of the RF algorithm in basketball posture analysis. The research results confirm the reliability of the inertial sensor in the field of motion posture analysis and make some contributions to its application in sport training. This paper provides support for the analysis of motion posture.

References

1.
Sebastijan
,
S.
, and
Matjaz
,
J.
,
2015
, “
Inertial Sensor-Based Gait Recognition: A Review
,”
Sensors
,
15
(
9
), pp.
22089
22127
.10.3390/s150922089
2.
Sun
,
T. Y.
,
Li
,
H.
,
Liu
,
Q. Q.
,
Duan
,
L. H.
,
Li
,
M.
,
Wang
,
C. B.
,
Liu
,
Q. H.
,
Li
,
W. G.
,
Shang
,
W. F.
,
Wu
,
Z. Z.
, and
Wang
,
Y. L.
,
2017
, “
Inertial Sensor-Based Motion Analysis of Lower Limbs for Rehabilitation Treatments
,”
J. Healthc. Eng.
,
2017
, pp.
1
11
.10.1155/2017/1949170
3.
Gao
,
W.
,
Emaminejad
,
S.
,
Nyein
,
H. Y. Y.
,
Challa
,
S.
,
Chen
,
K.
,
Peck
,
A.
,
Fahad
,
H. M.
,
Ota
,
H.
,
Shiraki
,
H.
,
Kiriya
,
D.
,
Lien
,
D. H.
,
Brooks
,
G. A.
,
Davis
,
R.
, and
Javey
,
A.
,
2016
, “
Fully Integrated Wearable Sensor Arrays for Multiplexed in Situ Perspiration Analysis
,”
Nature
,
529
(
7587
), pp.
509
514
.10.1038/nature16521
4.
Xiang
,
N.
,
Wang
,
F. F.
,
Wang
,
B. B.
,
Yi
,
S. L.
,
Jin
,
X. B.
,
Su
,
T. L.
,
Kong
,
J. L.
, and
Bai
,
Y. T.
,
2017
, “
Gesture Detected by Inertial Sensor
,”
Control & Decision Conference
, Chongqing, China, May 28–30, pp.
7740
7743
.10.1109/CCDC.2017.7978596
5.
Jung
,
D.
,
Nguyen
,
M. D.
,
Han
,
J.
,
Park
,
M.
,
Lee
,
K.
,
Yoo
,
S.
,
Kim
,
J.
, and
Mun
,
K. R.
,
2019
, “
Deep Neural Network-Based Gait Classification Using Wearable Inertial Sensor Data
,”
Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.
,
2019
, pp.
3624
3628
.10.1109/EMBC.2019.8857872
6.
Lim
,
S.
, and
D'Souza
,
C.
,
2019
, “
Statistical Prediction of Load Carriage Mode and Magnitude From Inertial Sensor Derived Gait Kinematics
,”
Appl. Ergon.
,
76
, pp.
1
11
.10.1016/j.apergo.2018.11.007
7.
Hsu
,
Y. L.
,
Yang
,
S. C.
,
Chang
,
H. C.
, and
Lai
,
H. C.
,
2018
, “
Human Daily and Sport Activity Recognition Using a Wearable Inertial Sensor Network
,”
IEEE Access
, 6, pp.
31715
31728
.10.1109/ACCESS.2018.2839766
8.
Mcginnis
,
R. S.
,
Cain
,
S. M.
,
Davidson
,
S. P.
,
Vitali
,
R. V.
,
Mclean
,
S. G.
, and
Perkins
,
N. C.
,
2017
, “
Inertial Sensor and Cluster Analysis for Discriminating Agility Run Technique and Quantifying Changes Across Load
,”
Biomed. Signal Process. Control
, 32, pp.
150
156
.10.1016/j.bspc.2016.10.013
9.
Struzik
,
A.
,
Zawadzki
,
J.
, and
Pietraszewski
,
B.
,
2015
, “
Balance Disorders Caused by Running and Jumping Occurring in Young Basketball Players
,”
Acta Bioeng. Biomech.
,
17
(
2
), pp.
103
109
.10.5277/ABB-00097-2014-02
10.
Huang
,
C. F.
,
2019
, “
Lower Extremity Biomechanics of Female College Soccer and Basketball Players During Sidestep Cutting
,”
ISBS Proc. Arch.
,
37
(
1
), Article No.
58
.https://commons.nmu.edu/isbs/vol37/iss1/58
11.
Fishman
,
M. P.
,
Lombardo
,
S. J.
, and
Kharrazi
,
F. D.
,
2016
, “
Vitamin D Deficiency Among Professional Basketball Players
,”
Orthop. J. Sports Med.
,
4
(
7
), p.
232596711665574
.10.1177/2325967116655742
12.
Sinclair
,
J.
, and
Sant
,
B.
,
2018
, “
Effects of High and Low Cut Footwear on the Kinetics and 3D Kinematics of Basketball Specific Motions
,”
J. Mech. Med. Biol.
,
18
(
1
), p.
1850004
.10.1142/S0219519418500045
13.
Zhang
,
S.
,
Fu
,
W.
, and
Liu
,
Y.
,
2019
, “
Changes in Lower-Limb Biomechanics, Soft Tissue Vibrations, and Muscle Activation During Unanticipated Bipedal Landings
,”
J. Hum. Kinet.
,
67
(
1
), pp.
25
35
.10.2478/hukin-2019-0003
14.
Prasetyo
,
E.
, and
Prasetiyo
,
B.
,
2020
, “
Peningkatan Akurasi Klasifikasi Algoritma C 4.5 Menggunakan Teknik Bagging Pada Diagnosis Penyakit Jantung
,”
J. Teknol. Inf. dan Ilmu Komput.
,
7
(
5
), p.
1035
.10.25126/jtiik.2020752379
15.
Belgiu
,
M.
, and
Drăguţ
,
L.
,
2016
, “
Random Forest in Remote Sensing: A Review of Applications and Future Directions
,”
ISPRS J. Photogramm.
,
114
, pp.
24
31
.10.1016/j.isprsjprs.2016.01.011
16.
Fauziah
,
D. A.
,
Maududie
,
A.
, and
Nuritha
,
I.
,
2018
, “
Klasifikasi Berita Politik Menggunakan Algoritma K-Nearst Neighbor
,”
Berkala Sainstek
,
6
(
2
), p.
106
.10.19184/bst.v6i2.9256
17.
Shi
,
J.
,
Lee
,
W. J.
,
Liu
,
Y.
,
Yang
,
Y. P.
, and
Wang
,
P.
,
2012
, “
Forecasting Power Output of Photovoltaic Systems Based on Weather Classification and Support Vector Machines
,”
IEEE Trans. Ind. Appl.
,
48
(
3
), pp.
1064
1069
.10.1109/TIA.2012.2190816
You do not currently have access to this content.