Abstract

Aortic compliance has been well established as an independent predictor of cardiovascular morbidity and mortality. The current “gold standard” for assessing aortic compliance is to use the carotid-femoral pulse-wave velocity (PWV) as a surrogate; however, PWV alone has been discussed in the literature as being inadequate for assessing compliance, especially for elderly patients and others who have a stiff aorta. In this paper, an equation for the aortic compliance is developed using two approaches: (1) lumped-parameter modeling based on blood-pressure data and (2) distributed modeling based on the PWV. in vitro experiments are conducted using a silicone-rubber tube which simulates the aorta, and an actual aorta harvested from a 1 year old, Holstein heifer. For both the rubber aorta and the Holstein aorta, a comparison is made between the blood-pressure model and the PWV model. In conclusion, it is shown that good agreement exists between the two models, suggesting that either model may be used depending upon the available data. Furthermore, due to differences in material properties, it is shown that the compliance of the rubber aorta increases with mean arterial pressure, while the compliance of the Holstein aorta decreases with mean arterial pressure. Clinical implications of this research are also discussed.

References

1.
Papaioannou
,
T. G.
,
Protogerou
,
A. D.
,
Argyris
,
A.
,
Aissopou
,
E.
,
Georgiopoulos
,
G.
,
Nasothimiou
,
E.
,
Tountas
,
C.
,
Sfikakis
,
P. P.
,
Stergiopulos
,
N.
, and
Tousoulis
,
D.
,
2017
, “
Total Arterial Compliance, Estimated by a Novel Method, is Better Related to Left Ventricular Mass Compared to Aortic Pulse Wave Velocity: The SAFAR Study
,”
Clinical Exp. Hypertens.
,
39
(
3
), pp.
271
276
.10.1080/10641963.2016.1247165
2.
Ben-Shlomo
,
Y.
,
Spears
,
M.
,
Boustred
,
C.
,
May
,
M.
,
Anderson
,
S. G.
,
Benjamin
,
E. J.
,
Boutouyrie
,
P.
,
Cameron
,
J.
,
Chen
,
C. H.
,
Cruickshank
,
J. K.
,
Hwang
,
S. J.
,
Lakatta
,
E. G.
,
Laurent
,
S.
,
Maldonado
,
J.
,
Mitchell
,
G. F.
,
Najjar
,
S. S.
,
Newman
,
A. B.
,
Ohishi
,
M.
,
Pannier
,
B.
,
Pereira
,
T.
,
Vasan
,
R. S.
,
Shokawa
,
T.
,
Sutton-Tyrell
,
K.
,
Verbeke
,
F.
,
Wang
,
K. L.
,
Webb
,
D. J.
,
Willum Hansun
,
T.
,
Zoungas
,
S.
,
McEniery
,
C. M.
,
Cockcroft
,
J. R.
, and
Wilkinson
,
I. B.
,
2014
, “
Aortic Pulse Wave Velocity Improves Cardiovascular Event Prediction
,”
J. Am. Coll. Cardiol.
,
63
(
7
), pp.
636
646
.10.1016/j.jacc.2013.09.063
3.
Blacher
,
J.
,
Asmar
,
R.
,
Djane
,
S.
,
London
,
G. M.
, and
Safar
,
M. E.
,
1999
, “
Aortic Pulse Wave Velocity as a Marker of Cardiovascular Risk in Hypertensive Patients
,”
Hypertension
,
33
(
5
), pp.
1111
1117
.10.1161/01.HYP.33.5.1111
4.
Laurent
,
S.
,
Boutouyrie
,
P.
,
Asmar
,
R.
,
Gautier
,
I.
,
Laloux
,
B.
,
Guize
,
L.
,
Ducimetiere
,
P.
, and
Benetos
,
A.
,
2001
, “
Aortic Stiffness is an Independent Predictor of All-Cause and Cardiovascular Mortality in Hypertensive Patients
,”
Hypertension
,
37
(
5
), pp.
1236
1241
.10.1161/01.HYP.37.5.1236
5.
Laurent
,
S.
,
Cockcroft
,
J.
,
Van Bortel
,
L.
,
Boutouyrie
,
P.
,
Giannattasio
,
C.
,
Hayoz
,
D.
,
Pannier
,
B.
,
Vlachopoulos
,
C.
,
Wilkinson
,
I.
, and
Struijker-Boudier
,
H.
,
2006
, “
Expert Consensus Document on the Arterial Stiffness: Methodological Issues and Clinical Applications
,”
Eur. Heart J.
,
27
(
21
), pp.
2588
2605
.10.1093/eurheartj/ehl254
6.
Lillie
,
J. S.
,
Liberson
,
A. S.
,
Mix
,
D.
,
Schwartz
,
K. Q.
,
Chandra
,
A.
,
Phillips
,
D. B.
,
Day
,
S. W.
, and
Borkholder
,
D. A.
,
2015
, “
Pulse Wave Velocity Prediction and Compliance Assessment in Elastic Arterial Segments
,”
Cardiovasc. Eng. Technol. Biomed. Eng. Soc.
,
6
(
1
), pp.
49
58
.10.1007/s13239-014-0202-x
7.
Frank
,
O.
,
1899
, “
Die Grundform Des Arteriellen Pulses
,”
Z. Biol.
,
37
, pp.
483
526
(translated by Sagawa, K., Lie, R. K., and Schaefer, J., 1990, J. Mol. Cell Cardiol., 22, 253–277).
8.
Westerhof
,
N.
,
Lankhaar
,
J. W.
, and
Westerhof
,
B. E.
,
2009
, “
The Arterial Windkessel
,”
Medical Biol. Eng. Comput.
,
47
(
2
), pp.
131
141
.10.1007/s11517-008-0359-2
9.
Tsanas
,
A.
,
Goulermas
,
J. Y.
,
Vartela
,
V.
,
Tsiapras
,
D.
,
Theodorakis
,
G.
,
Fisher
,
A. C.
, and
Sfirakis
,
P.
,
2009
, “
The Windkessel Model Revisited: A Qualitative Analysis of the Circulatory System
,”
Med. Eng. Phys.
,
31
(
5
), pp.
581
588
.10.1016/j.medengphy.2008.11.010
10.
Capoccia
,
M.
,
2015
, “
Development and Characterization of the Arterial Windkessel and Its Role During Left Ventricular Assist Device Assistance
,”
Artif. Organs
,
39
(
8
), pp.
E138
E153
.10.1111/aor.12532
11.
Tavera
,
M. M.
,
Remolina
,
J. F.
,
Wray
,
S.
,
Cymberknop
,
L. J.
, and
Armentano
,
R. L.
,
2015
, “
Windkessel Model in the Qualitative Analysis of the Circulatory System of Smokers
,”
Sixth Latin American Congress Biomedical Engineering,
Vol.
49
, Parana, Argentina, Oct. 29–31, pp.
880
883
.10.1007/978-3-319-13117-7_223
12.
Mitha
,
A. P.
,
Mynard
,
J. P.
,
Storwick
,
J. A.
,
Shivji
,
Z. I.
,
Wong
,
J. H.
, and
Morrish
,
W.
,
2015
, “
Can the Windkessel Hypothesis Explain Delayed Intraparenchymal Haemorrhage After Flow Diversion? A Case Report and Model-Based Analysis of Possible Mechanisms
,”
Heart, Lung Circ.
,
24
(
8
), pp.
824
830
.10.1016/j.hlc.2015.02.001
13.
Zylinski
,
M.
,
Niewiadomski
,
W.
,
Strasz
,
A.
,
Gasiorowska
,
A.
,
Berka
,
M.
,
Mlynczak
,
M.
, and
Cybulski
,
G.
,
2015
, “
Individualization of the Parameters of the 3-Elements Windkessel Model Using Carotid Pulse Signal
,”
SPIE Paper No. 96621N
.10.1117/12.2205617
14.
Charlton
,
P.
,
Smith
,
J.
,
Camporota
,
L.
,
Beale
,
R.
, and
Alastruey
,
J.
,
2014
, “
Optimising the Windkessel Model for Cardiac Output Monitoring During Changes in Vascular Tone
,”
36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
Chicago, IL
, Aug. 26–30,  pp.
3759
3762
.10.1109/EMBC.2014.6944441
15.
Stiukhina
,
E. S.
,
Kurochkin
,
M. A.
,
Klochkov
,
V. A.
,
Fedosov
,
I. V.
, and
Postnove
,
D. E.
,
2014
, “
Tissue Perfusability Assessment From Capillary Velocimetry Data Via the Multicompartment Windkessel Model
,”
SPIE Paper No. 94481K
.10.1117/12.2179870
16.
Choudhury
,
A. D.
,
Banerjee
,
R.
,
Sinha
,
A.
, and
Kundu
,
S.
,
2014
, “
Estimating Blood Pressure Using Windkessel Model on Photoplethysmogram
,”
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
Chicago, IL
, Aug. 26–30, pp.
4567
4570
.10.1109/EMBC.2014.6944640
17.
Papaioannou
,
T. G.
,
Protogerou
,
A. D.
,
Stergiopulos
,
N.
,
Vardoulis
,
O.
,
Stefanadis
,
C.
,
Safar
,
M.
, and
Blacher
,
J.
,
2014
, “
Total Arterial Compliance Estimated by a Novel Method and All-Cause Mortality in the Elderly: The PROTEGER Study
,”
Age
,
36
(
3
), pp.
1555
1563
.10.1007/s11357-014-9661-0
18.
Vardoulis
,
O.
,
Papaioannou
,
T. G.
, and
Stergiopulos
,
N.
,
2012
, “
On the Estimation of Total Arterial Compliance From Aortic Pulse Wave Velocity
,”
Ann. Biomed. Eng.
,
40
(
12
), pp.
2619
2626
.10.1007/s10439-012-0600-x
19.
Salvi
,
P.
,
2012
,
Pulse Waves: How Vascular Hemodynamics Affects Blood Pressure
,
Springer
,
New York
.
20.
Maria
,
J. M. S.
,
2011
, “
Continuous Non-Invasive Blood Pressure Estimation
,” Doctoral dissertation, ETH Zurich, Switzerland.
21.
Bramwell
,
J. C.
, and
Hill
,
A. V.
,
1922
, “
The Velocity  of the Pulse Wave in Man
,”
Proc. R. Soc. London.
,
B93
, pp.
298
306
.10.1098/rspb.1922.0022
22.
Ma
,
Y.
,
Choi
,
J.
,
Hourlier-Fargette
,
A.
,
Xue
,
Y.
,
Chung
,
H. U.
,
Lee
,
J. Y.
,
Wang
,
X.
,
Xie
,
Z.
,
Kang
,
D.
,
Wang
,
H.
,
Han
,
S.
,
Kang
,
S. K.
,
Kang
,
Y.
,
Yu
,
X.
,
Slepian
,
M. J.
,
Raj
,
M. S.
,
Model
,
J. B.
,
Feng
,
X.
,
Ghaffari
,
R.
,
Rogers
,
J. A.
, and
Huang
,
Y.
,
2018
, “
Relation Between Blood Pressure and Pulse Wave Velocity for Human Arteries
,”
PNAS
,
115
(
44
), pp.
11144
11149
.10.1073/pnas.1814392115
23.
Westerhof
,
N.
,
Sipkema
,
P.
,
Bos
,
G. C. V. D.
, and
Elzinga
,
G.
,
1972
, “
Forward and Backward Waves in the Arterial System
,”
Cardiovasc. Res.
,
6
(
6
), pp.
648
–6
56
.10.1093/cvr/6.6.648
24.
Khir
,
A. W.
,
O'Brien
,
A.
,
Gibbs
,
J. S. R.
, and
Parker
,
K. H.
,
2001
, “
Determination of Wave Speed and Wave Separation in the Arteries
,”
J. Biomech.
,
34
(
9
), pp.
1145
–11
55
.10.1016/S0021-9290(01)00076-8
25.
Feng
,
J.
, and
Khir
,
A. W.
,
2010
, “
Determination of Wave Speed and Wave Separation in the Arteries Using Diameter and Velocity
,”
J. Biomech.
,
43
(
3
), pp.
455
–4
62
.10.1016/j.jbiomech.2009.09.046
26.
Davies
,
J. E.
,
Whinnett
,
Z. I.
,
Francis
,
D. P.
,
Willson
,
K.
,
Foale
,
R. A.
,
Malik
,
I. S.
,
Hughes
,
A. D.
,
Parker
,
K. H.
, and
Mayet
,
J.
,
2006
, “
Use of Simultaneous Pressure and Velocity Measurements to Estimate Arterial Wave Speed at a Single Site in Humans
,”
Am. J. Physiol.
,
290
(
2
), pp.
H878
H885
.10.1152/ajpheart.00751.2005
27.
Rabben
,
S. I.
,
Stergiopulos
,
N.
,
Hellevik
,
L. R.
,
Smiseth
,
O. A.
,
Slørdahl
,
S.
,
Urheim
,
S.
, and
Angelsen
,
B.
,.
2004
, “
An Ultrasound-Based Method for Determining Pulse Wave Velocity in Superficial Arteries
,”
J. Biomech.
,
37
(
10
), pp.
1615
–16
22
.10.1016/j.jbiomech.2003.12.031
28.
Fazeli
,
N.
, and
Hahn
,
J. O.
,
2012
, “
Estimation of Cardiac Output and Peripheral Resistance Using Square-Wave-Approximated Aortic Flow Signal
,”
Front. Physiol.
,
3
(
298
), pp.
1
10
.10.3389/fphys.2012.00298
29.
Carrier
,
G. F.
, and
Pearson
,
C. E.
,
1988
,
Partial Differential Equations: Theory and Technique
, 2nd ed.,
Academic Press
,
New York
.
30.
Kreyszig
,
E.
,
1988
,
Advanced Engineering Mathematics
, 6th ed.,
Wiley
,
New York
.
31.
Guyton
,
A. C.
, and
Hall
,
J. E.
,
2006
,
Textbook of Medical Physiology
, 11th ed.,
Elsevier
,
Philadelphia, PA
, pp.
19103
2899
.
32.
Gaddum
,
N. R.
,
Alastruey
,
J.
,
Beerbaum
,
P.
,
Chowienczyk
,
P.
, and
Schaeffter
,
T.
,
2013
, “
A Technical Assessment of Pulse Wave Velocity Algorithms Applied to Non-Invasive Arterial Waveforms
,”
Ann. Biomed. Eng.
,
41
(
12
), pp.
2617
2629
.10.1007/s10439-013-0854-y
33.
Kazanavicius
,
E.
,
Gircys
,
R.
,
Vrubliauskas
,
A.
, and
Lugin
,
S.
,
2005
, “
Mathematical Methods for Determining the Foot Point on the Arterial Pulse Wave and Evaluation of Proposed Methods
,”
Inf. Technol. Control
,
34
(
1
), pp. 29–36. https://www.researchgate.net/publication/267835453_Mathematical_methods_for_determining_the_foot_point_of_the_arterial_pulse_wave_and_evaluation_of_proposed_methods
34.
Yavuz
,
Y.
,
Tunçöz
,
I. O.
,
Yang
,
Y.
,
Arslan
,
P.
,
Kalkan
,
U.
,
Tıraş
,
H.
,
Gürses
,
E.
,
Şahin
,
M.
, and
Özgen
,
S.
,
2015
, “
Decamber Morphing Concepts by Using a Hybrid Trailing Edge Control Surface
,”
Aerospace
,
2015
,
2
(
3
), pp.
482
504
.10.3390/aerospace2030482
35.
Łagan
,
S.
, and
Liber-Kneć
,
A.
,
2020
, “
Mechanical Properties of Porcine Aorta—Influence of Specimen Taken Orientation
,” Current Trends in Biomedical Engineering and Bioimages Analysis. PCBEE 2019. Advances in Intelligent Systems and Computing, Vol.
1033
,
J.
Korbicz
,
R.
Maniewski
,
K.
Patan
,
M.
Kowal
, eds.,
Springer
,
Cham, Switzerland
.10.1007/978-3-030-29885-2_25
You do not currently have access to this content.