Abstract

The multifidus is an important muscle for the active stabilization of the spine. Unfortunately, clinical procedures such as posterior lumbar fusion (PLF) and radio frequency neurotomy (RFN) cause injury to these muscles affecting their function. However, evaluating multifidus function using traditional biomechanical methods is challenging due to its unique anatomical features. The change in muscle shear modulus during contraction has been corrected to force generation for several skeletal muscles. Therefore, the change in shear modulus can be used to quantify muscle contraction. The objective of this study was to evaluate multifidus dysfunction by comparing changes in shear modulus during muscle contraction in healthy individuals and patients who received RFN and PLF in the lumbar spine. We used our recently developed protocol which consists of measuring changes of multifidus shear modulus at lying prone, sitting up, and sitting up with the arms lifted. In healthy individuals, the median multifidus shear modulus increased progressively from prone, sitting, and sitting with arms raised: 18.55 kPa, 27.14 kPa, and 38.45 kPa, respectively. A moderate increase in shear modulus for these body positions was observed in PLF patients: 9.81 kPa, 17.26 kPa, and 21.85 kPa. In RFN patients, the shear modulus remained relatively constant: 14.44 kPa, 16.57 kPa, and 17.26 kPa. Overall, RFN and PLF caused a reduction in the contraction of multifidus muscles. However, the contraction of multifidus muscle slightly increased during multifidus activation in PLF patients, while it did not change in RFN patients. These preliminary measurements suggest that the proposed protocol using SWE can provide important information about the function of individual spine muscles to guide the design and evaluation of postsurgical rehabilitation protocols.

References

1.
Pangarkar
,
S.
, and
Miedema
,
M. L.
,
2014
, “
Pulsed Versus Conventional Radio Frequency Ablation for Lumbar Facet Joint Dysfunction
,”
Curr. Phys. Med. Rehabil. Rep.
,
2
(
1
), pp.
61
65
.10.1007/s40141-013-0040-z
2.
Streitberger
,
K.
,
Müller
,
T.
,
Eichenberger
,
U.
,
Trelle
,
S.
, and
Curatolo
,
M.
,
2011
, “
Factors Determining the Success of Radiofrequency Denervation in Lumbar Facet Joint Pain: A Prospective Study
,”
Eur. Spine J.
,
20
(
12
), pp.
2160
2165
.10.1007/s00586-011-1891-6
3.
Cohen
,
S. P.
, and
Raja
,
S. N.
,
2007
, “
Pathogenesis, Diagnosis, and Treatment of Lumbar Zygapophysial (Facet) Joint Pain
,”
Anesthesiol.: J. Am. Soc. Anesthesiol.
,
106
(
3
), pp.
591
614
.10.1097/00000542-200703000-00024
4.
Suseki
,
K.
,
Takahashi
,
Y.
,
Takahashi
,
K.
,
Chiba
,
T.
,
Tanaka
,
K.
,
Morinaga
,
T.
,
Nakamura
,
S.-I.
, and
Moriya
,
H.
,
1997
, “
Innervation of the Lumbar Facet Joints: Origins and Functions
,”
Spine
,
22
(
5
), pp.
477
485
.10.1097/00007632-199703010-00003
5.
Dreyfuss
,
P.
,
Stout
,
A.
,
Aprill
,
C.
,
Pollei
,
S.
,
Johnson
,
B.
, and
Bogduk
,
N.
,
2009
, “
The Significance of Multifidus Atrophy After Successful Radiofrequency Neurotomy for Low Back Pain
,”
PMR
,
1
(
8
), pp.
719
722
.10.1016/j.pmrj.2009.05.014
6.
Ward
,
S. R.
,
Kim
,
C. W.
,
Eng
,
C. M.
,
Gottschalk
,
L. J.
, IV
,
Tomiya
,
A.
,
Garfin
,
S. R.
, and
Lieber
,
R. L.
,
2009
, “
Architectural Analysis and Intraoperative Measurements Demonstrate the Unique Design of the Multifidus Muscle for Lumbar Spine Stability
,”
J. Bone Jt. Surg. Am. Vol.
,
91
(
1
), pp.
176
185
.10.2106/JBJS.G.01311
7.
Smuck
,
M.
,
Crisostomo
,
R. A.
,
Demirjian
,
R.
,
Fitch
,
D. S.
,
Kennedy
,
D. J.
, and
Geisser
,
M. E.
,
2015
, “
Morphologic Changes in the Lumbar Spine After Lumbar Medial Branch Radiofrequency Neurotomy: A Quantitative Radiological Study
,”
Spine J.
,
15
(
6
), pp.
1415
1421
.10.1016/j.spinee.2013.06.096
8.
Goubert
,
D.
,
De Pauw
,
R.
,
Meeus
,
M.
,
Willems
,
T.
,
Cagnie
,
B.
,
Schouppe
,
S.
,
Van Oosterwijck
,
J.
,
Dhondt
,
E.
, and
Danneels
,
L.
,
2017
, “
Lumbar Muscle Structure and Function in Chronic Versus Recurrent Low Back Pain: A Cross-Sectional Study
,”
Spine J.
,
17
(
9
), pp.
1285
1296
.10.1016/j.spinee.2017.04.025
9.
Rahmani
,
N.
,
Kiani
,
A.
,
Mohseni-Bandpei
,
M. A.
, and
Abdollahi
,
I.
,
2018
, “
Multifidus Muscle Size in Adolescents With and Without Back Pain Using Ultrasonography
,”
J. Bodywork Mov. Ther.
,
22
(
1
), pp.
147
151
.10.1016/j.jbmt.2017.05.016
10.
Addison
,
O.
,
Marcus
,
R. L.
,
LaStayo
,
P. C.
, and
Ryan
,
A. S.
,
2014
, “
Intermuscular Fat: A Review of the Consequences and Causes
,”
Int. J. Endocrinol.
,
2014
, pp.
1
11
.10.1155/2014/309570
11.
Wallwork
,
T. L.
,
Hides
,
J. A.
, and
Stanton
,
W. R.
,
2007
, “
Intrarater and Interrater Reliability of Assessment of Lumbar Multifidus Muscle Thickness Using Rehabilitative Ultrasound Imaging
,”
J. Orthop. Sports Phys. Ther.
,
37
(
10
), pp.
608
612
.10.2519/jospt.2007.2418
12.
Stokes
,
M.
,
Hides
,
J.
,
Elliott
,
J.
,
Kiesel
,
K.
, and
Hodges
,
P.
,
2007
, “
Rehabilitative Ultrasound Imaging of the Posterior Paraspinal Muscles
,”
J. Orthop. Sports Phys. Ther.
,
37
(
10
), pp.
581
595
.10.2519/jospt.2007.2599
13.
Kiesel
,
K. B.
,
Uhl
,
T. L.
,
Underwood
,
F. B.
,
Rodd
,
D. W.
, and
Nitz
,
A. J.
,
2007
, “
Measurement of Lumbar Multifidus Muscle Contraction With Rehabilitative Ultrasound Imaging
,”
Manual Ther.
,
12
(
2
), pp.
161
166
.10.1016/j.math.2006.06.011
14.
Sions
,
J. M.
,
Velasco
,
T. O.
,
Teyhen
,
D. S.
, and
Hicks
,
G. E.
,
2015
, “
Reliability of Ultrasound Imaging for the Assessment of Lumbar Multifidi Thickness in Older Adults With Chronic Low Back Pain
,”
J. Geriatr. Phys. Ther. (2001)
,
38
(
1
), p.
33
.10.1519/JPT.0000000000000021
15.
Sions
,
J. M.
,
Smith
,
A. C.
,
Hicks
,
G. E.
, and
Elliott
,
J. M.
,
2016
, “
Trunk Muscle Size and Composition Assessment in Older Adults With Chronic Low Back Pain: An Intra-Examiner and Inter-Examiner Reliability Study
,”
Pain Med.
,
17
(
8
), pp.
1436
1446
.10.1093/pm/pnv023
16.
Koppenhaver
,
S. L.
,
Hebert
,
J. J.
,
Fritz
,
J. M.
,
Parent
,
E. C.
,
Teyhen
,
D. S.
, and
Magel
,
J. S.
,
2009
, “
Reliability of Rehabilitative Ultrasound Imaging of the Transversus Abdominis and Lumbar Multifidus Muscles
,”
Arch. Phys. Med. Rehabil.
,
90
(
1
), pp.
87
94
.10.1016/j.apmr.2008.06.022
17.
Whitehead
,
N.
,
Weerakkody
,
N.
,
Gregory
,
J.
,
Morgan
,
D.
, and
Proske
,
U.
,
2001
, “
Changes in Passive Tension of Muscle in Humans and Animals After Eccentric Exercise
,”
J. Physiol.
,
533
(
2
), pp.
593
604
.10.1111/j.1469-7793.2001.0593a.x
18.
Todorov
,
P. T.
,
Nestorova
,
R.
, and
Batalov
,
A.
,
2018
, “
Diagnostic Value of Musculoskeletal Ultrasound in Patients With Low Back Pain—A Review of the Literature
,”
Med. Ultrasonography
,
1
(
1
), p.
80
.10.11152/mu-1245
19.
Shair
,
E.
,
Ahmad
,
S.
,
Marhaban
,
M.
,
Mohd Tamrin
,
S.
, and
Abdullah
,
A.
,
2017
, “
EMG Processing Based Measures of Fatigue Assessment During Manual Lifting
,”
BioMed Res. Int.
,
2017
, pp.
1
12
.10.1155/2017/3937254
20.
Smith
,
L. H.
, and
Hargrove
,
L. J.
,
2013,
Comparison of Surface and Intramuscular EMG Pattern Recognition for Simultaneous Wrist/Hand Motion Classification
,” 35th Annual International Conference of the IEEE, Proceedings Engineering in Medicine and Biology Society (
EMBC
), Osaka, Japan, July 3–7, pp.
4223
4226
.10.1109/EMBC.2013.6610477
21.
Palmeri
,
M. L.
, and
Nightingale
,
K. R.
,
2011
, “
Acoustic Radiation Force-Based Elasticity Imaging Methods
,”
Interface Focus
,
1
(
4
), pp.
553
564
.10.1098/rsfs.2011.0023
22.
Cortes
,
D. H.
,
Suydam
,
S. M.
,
Silbernagel
,
K. G.
,
Buchanan
,
T. S.
, and
Elliott
,
D. M.
,
2015
, “
Continuous Shear Wave Elastography: A New Method to Measure Viscoelastic Properties of Tendons In Vivo
,”
Ultrasound Med. Biol.
,
41
(
6
), pp.
1518
1529
.10.1016/j.ultrasmedbio.2015.02.001
23.
Song
,
P.
,
Urban
,
M. W.
,
Manduca
,
A.
,
Zhao
,
H.
,
Greenleaf
,
J. F.
, and
Chen
,
S.
,
2013
, “
Comb-Push Ultrasound Shear Elastography (CUSE) With Various Ultrasound Push Beams
,”
IEEE Trans. Med. Imaging
,
32
(
8
), pp.
1435
1447
.10.1109/TMI.2013.2257831
24.
Nordez
,
A.
, and
Hug
,
F.
,
2010
, “
Muscle Shear Elastic Modulus Measured Using Supersonic Shear Imaging is Highly Related to Muscle Activity Level
,”
J. Appl. Physiol.
,
108
(
5
), pp.
1389
1394
.10.1152/japplphysiol.01323.2009
25.
Koo
,
T. K.
,
Guo
,
J.-Y.
,
Cohen
,
J. H.
, and
Parker
,
K. J.
,
2013
, “
Relationship Between Shear Elastic Modulus and Passive Muscle Force: An Ex-Vivo Study
,”
J. Biomech.
,
46
(
12
), pp.
2053
2059
.10.1016/j.jbiomech.2013.05.016
26.
Bouillard
,
K.
,
Hug
,
F.
,
Guével
,
A.
, and
Nordez
,
A.
,
2012
, “
Shear Elastic Modulus Can Be Used to Estimate an Index of Individual Muscle Force During a Submaximal Isometric Fatiguing Contraction
,”
J. Appl. Physiol.
,
113
(
9
), pp.
1353
1361
.10.1152/japplphysiol.00858.2012
27.
Hug
,
F.
,
Tucker
,
K.
,
Gennisson
,
J.-L.
,
Tanter
,
M.
, and
Nordez
,
A.
,
2015
, “
Elastography for Muscle Biomechanics: Toward the Estimation of Individual Muscle Force
,”
Exercise Sport Sci. Rev.
,
43
(
3
), pp.
125
133
.10.1249/JES.0000000000000049
28.
Moreau
,
B.
,
Vergari
,
C.
,
Gad
,
H.
,
Sandoz
,
B.
,
Skalli
,
W.
, and
Laporte
,
S.
,
2016
, “
Non-Invasive Assessment of Human Multifidus Muscle Stiffness Using Ultrasound Shear Wave Elastography: A Feasibility Study
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
230
(
8
), pp.
809
814
.10.1177/0954411916656022
29.
Sadeghi
,
S.
,
Quinlan
,
K.
,
Eilertson
,
K. E.
,
Billy
,
G. G.
,
Bible
,
J.
,
Sions
,
J. M.
, and
Cortes
,
D. H.
,
2019
, “
Changes in Shear Modulus of the Lumbar Multifidus Muscle During Different Body Positions
,”
ASME J. Biomech. Eng.
,
141
(
8
), p.
081003
.10.1115/1.4043443
30.
Bercoff
,
J.
,
Tanter
,
M.
, and
Fink
,
M.
,
2004
, “
Supersonic Shear Imaging: A New Technique for Soft Tissue Elasticity Mapping
,”
IEEE Trans. Ultrasonics, Ferroelectr., Frequency Control
,
51
(
4
), pp.
396
409
.10.1109/TUFFC.2004.1295425
31.
Lin
,
C.-Y.
,
Sadeghi
,
S.
,
Bader
,
D. A.
, and
Cortes
,
D. H.
,
2018
, “
Ultrasound Shear Wave Elastography of the Elbow Ulnar Collateral Ligament: Reliability Test and a Preliminary Case Study in a Baseball Pitcher
,”
ASME J. Eng. Sci. Med. Diagn. Ther.
,
1
(
1
), p.
011004
.10.1115/1.4038259
32.
Sadeghi
,
S.
,
Lin
,
C.-Y.
,
Bader
,
D. A.
, and
Cortes
,
D. H.
,
2018
, “
Evaluating Changes in Shear Modulus of Elbow Ulnar Collateral Ligament in Overhead Throwing Athletes Over the Course of a Competitive Season
,”
ASME J. Eng. Sci. Med. Diagn. Ther.
,
1
(
4
), p.
041008
.10.1115/1.4041503
33.
Sadeghi
,
S.
,
Johnson
,
M.
,
Bader
,
D. A.
, and
Cortes
,
D. H.
,
2019
, “
The Shear Modulus of Lower-Leg Muscles Correlates to Intramuscular Pressure
,”
J. Biomech.
,
83
, pp.
190
196
.10.1016/j.jbiomech.2018.11.045
34.
Sadeghi
,
S.
,
Lin
,
C.-Y.
, and
Cortes
,
D. H.
,
2019
, “
Narrowband Shear Wave Generation Using Sinusoidally Modulated Acoustic Radiation Force
,”
IEEE Trans. Ultrasonics, Ferroelectr., Frequency Control
,
66
(
2
), pp.
264
272
.10.1109/TUFFC.2018.2884847
35.
Sullivan
,
M. J.
,
Bishop
,
S. R.
, and
Pivik
,
J.
,
1995
, “
The Pain Catastrophizing Scale: Development and Validation
,”
Psychol. Assessment
,
7
(
4
), pp.
524
532
.10.1037/1040-3590.7.4.524
36.
Fritz
,
J. M.
, and
Irrgang
,
J. J.
,
2001
, “
A Comparison of a Modified Oswestry Low Back Pain Disability Questionnaire and the Quebec Back Pain Disability Scale
,”
Phys. Ther.
,
81
(
2
), pp.
776
788
.10.1093/ptj/81.2.776
37.
Langley
,
G.
, and
Sheppeard
,
H.
,
1985
, “
The Visual Analogue Scale: Its Use in Pain Measurement
,”
Rheumatol. Int.
,
5
(
4
), pp.
145
148
.10.1007/BF00541514
38.
Sions
,
J. M.
,
Velasco
,
T. O.
,
Teyhen
,
D. S.
, and
Hicks
,
G. E.
,
2014
, “
Ultrasound Imaging: Intraexaminer and Interexaminer Reliability for Multifidus Muscle Thickness Assessment in Adults Aged 60 to 85 Years Versus Younger Adults
,”
J. Orthop. Sports Phys. Ther.
,
44
(
6
), pp.
425
434
.10.2519/jospt.2014.4584
39.
Sions
,
J. M.
,
Teyhen
,
D. S.
, and
Hicks
,
G. E.
,
2017
, “
Criterion Validity of Ultrasound Imaging: Assessment of Multifidi Cross-Sectional Area in Older Adults With and Without Chronic Low Back Pain
,”
J. Geriatric Phys. Ther.
,
40
(
2
), pp.
74
79
.10.1519/JPT.0000000000000073
40.
Akagi
,
R.
,
Yamashita
,
Y.
, and
Ueyasu
,
Y.
,
2015
, “
Age-Related Differences in Muscle Shear Moduli in the Lower Extremity
,”
Ultrasound Med. Biol.
,
41
(
11
), pp.
2906
2912
.10.1016/j.ultrasmedbio.2015.07.011
41.
Dieterich
,
A. V.
,
Andrade
,
R. J.
,
Le Sant
,
G.
,
Falla
,
D.
,
Petzke
,
F.
,
Hug
,
F.
, and
Nordez
,
A.
,
2017
, “
Shear Wave Elastography Reveals Different Degrees of Passive and Active Stiffness of the Neck Extensor Muscles
,”
Eur. J. Appl. Physiol.
,
117
(
1
), pp.
171
178
.10.1007/s00421-016-3509-5
42.
Alis
,
D.
,
Durmaz
,
E. S. M.
,
Alis
,
C.
,
Erol
,
B. C.
,
Okur
,
B.
,
Kizilkilic
,
O.
, and
Mihmanli
,
I.
,
2019
, “
Shear Wave Elastography of the Lumbar Multifidus Muscle in Patients With Unilateral Lumbar Disk Herniation
,”
J. Ultrasound Med.
,
38
(
7
), pp.
1695
1703
.10.1002/jum.14854
43.
Min
,
S.-H.
,
Kim
,
M.-H.
,
Seo
,
J.-B.
,
Lee
,
J.-Y.
, and
Lee
,
D.-H.
,
2009
, “
The Quantitative Analysis of Back Muscle Degeneration After Posterior Lumbar Fusion: Comparison of Minimally Invasive and Conventional Open Surgery
,”
Asian Spine J.
,
3
(
2
), p.
89
.10.4184/asj.2009.3.2.89
44.
Virk
,
S. S.
,
Niedermeier
,
S.
,
Yu
,
E.
, and
Khan
,
S. N.
,
2014
, “
Adjacent Segment Disease
,”
Orthopedics
,
37
(
8
), pp.
547
555
.10.3928/01477447-20140728-08
45.
Kong
,
W. Z.
,
Goel
,
V. K.
,
Gilbertson
,
L. G.
, and
Weinstein
,
J. N.
,
1996
, “
Effects of Muscle Dysfunction on Lumbar Spine Mechanics: A Finite Element Study Based on a Two Motion Segments Model
,”
Spine
,
21
(
19
), pp.
2197
2206
.10.1097/00007632-199610010-00004
46.
Ateş
,
F.
,
Hug
,
F.
,
Bouillard
,
K.
,
Jubeau
,
M.
,
Frappart
,
T.
,
Couade
,
M.
,
Bercoff
,
J.
, and
Nordez
,
A.
,
2015
, “
Muscle Shear Elastic Modulus is Linearly Related to Muscle Torque Over the Entire Range of Isometric Contraction Intensity
,”
J. Electromyogr. Kinesiol.
,
25
(
4
), pp.
703
708
.10.1016/j.jelekin.2015.02.005
47.
Adnan
,
R.
,
Van Oosterwijck
,
J.
,
Danneels
,
L.
,
Willems
,
T.
,
Meeus
,
M.
,
Crombez
,
G.
, and
Goubert
,
D.
,
2020
, “
Structural Changes of Lumbar Muscles in Non-Specific Low Back Pain
,”
Pain Phys.
,
19
(
7
), pp.
1
E999
.10.3233/BMR-191548
You do not currently have access to this content.