Whispering gallery mode (WGM) resonators exhibit a high quality factor Q and a small mode volume; they usually exhibit high resolution when used as sensors. The light trapped inside a polymeric microcavity travels through total internal reflection generating the WGMs. A laser or a lamp is used to power the microlaser by using a laser dye embedded within the resonator. The excited fluorescence of the dye couples with the optical modes. The optical modes (laser modes) are seen as sharp peaks in the emission spectrum with the aid of an optical interferometer. The position of these optical modes is sensitive to any change in the morphology of the resonator. However, the laser threshold of these microlasers is of few hundreds of microjoules per square centimeter (fluence) usually. In addition, the excitation wavelength's light powering the device must be smaller than the microlasers size. When metallic nanoparticles are added to the microlaser, the excited surface plasmon couples with the emission spectrum of the laser dye. Therefore, the fluorescence of the dye can be enhanced by this coupling; this in turn, lowers the power threshold of the microlaser. Also, due to a plasmonic effect, it is possible to use smaller microlasers. In addition, a new sensing modality is enabled based on the variation of the optical modes' amplitude with the change in the morphology's microlaser. This opens a new avenue of low power consumption microlasers and photonics multiplexed biosensors.

References

1.
Moon
,
H.
,
Chough
,
Y.
, and
An
,
K.
,
2000
, “
Cylindrical Microcavity Laser Based on the Evanescent-Wave-Coupled Gain
,”
Phys. Rev. Lett.
,
85
(
15
), p.
3161
.
2.
Daia
,
J.
,
Xub
,
C. X.
,
Zheng
,
K.
,
Lv
,
C. G.
, and
Cui
,
Y. P.
,
2009
, “
Whispering Gallery-Mode Lasing in ZnO Microrods at Room Temperature
,”
Appl. Phys. Lett.
,
95
(
24
), p.
241110
.
4.
Wang
,
Y.
,
Leck
,
K. S.
,
Ta
,
V. D.
,
Chen
,
R.
,
Nalla
,
V.
,
Gao
,
Y.
,
He
,
T.
,
Demir
,
H. V.
, and
Sun
,
H.
,
2015
, “
Blue Liquid Lasers From Solution of CdZnS/ZnS Ternary Alloy Quantum Dots With Quasi‐Continuous Pumping
,”
Adv. Mater
,.
27
(
1
), p.
169
.
5.
Manzo
,
M.
, and
Ioppolo
,
T.
,
2015
, “
Untethered Photonic Sensor for Wall Pressure Measurement
,”
Opt. Lett.
,
40
(
10
), p.
2257
.
6.
Michler
,
P.
,
Kiraz
,
A.
,
Zhang
,
L.
,
Becher
,
C.
,
Hu
,
E.
, and
Imamoglu
,
A.
,
2000
, “
Laser Emission From Quantum Dots in Microdisk Structures
,”
Appl. Phys. Lett.
,
77
(
2
), p.
184
.
7.
Sandoghdar
,
V.
,
Treussart
,
F.
,
Hare
,
J.
,
Lefèvre-Seguin
,
V.
,
Raimond
,
J. M.
, and
Haroche
,
S.
,
1996
, “
Very Low Threshold Whispering-Gallery-Mode Microsphere Laser
,”
Phys. Rev. A
,
54
(
3
), p.
R1777(R)
.
8.
Jaffrennou
,
P.
,
Claudon
,
J.
,
Bazin
,
M.
,
Malik
,
N. S.
,
Reitzenstein
,
S.
,
Worschech
,
L.
,
Kamp
,
M.
,
Forchel
,
A.
, and
Gérard
,
J. M.
,
2010
, “
Whispering Gallery Mode Lasing in High Quality GaAs/AlAs Pillar Microcavities
,”
Appl. Phys. Lett.
,
96
(
7
), p.
071103
.
9.
Monakhov
,
A. M.
,
Sherstnev
,
V. V.
,
Astakhova
,
A. P.
,
Yakovlev
,
Y. P.
,
Boissier
,
G.
,
Teissier
,
R.
, and
Baranov
,
A. N.
,
2009
, “
Experimental Observation of Whispering Gallery Modes in Sector Disk Lasers
,”
Appl. Phys. Lett.
,
94
(
5
), p.
051102
.
10.
Chen
,
R.
,
Ta
,
V. D.
, and
Sun
,
H. D.
,
2012
, “
Single Mode Lasing From Hybrid Hemispherical Microresonators
,”
Sci. Rep.
,
2
, p.
A244
.https://www.nature.com/articles/srep00244
11.
Ioppolo
,
T.
, and
Manzo
,
M.
,
2014
, “
Dome Shaped Micro-Laser Encapsulated in a Flexible Film
,”
Laser Phys.
,
24
(
11
), p. 115803.
12.
Haken
,
H.
,
1970
, “
Laser Theory
,”
Light Matter Ic. Encyclopedia Physics
, Vol.
5
/25/2/2c, Universität Stuttgart, Stuttgart, Germany.
13.
Schuller
,
J. A.
,
Barnard
,
E. S.
,
Cai
,
W.
,
Jun
,
Y. C.
,
White
,
J. S.
, and
Brongersma
,
M. L.
,
2010
, “
Plasmonics for Extreme Light Concentration and Manipulation
,”
Nat. Mater.
,
9
(
3
), p.
193
.
14.
Gramotnev
,
D. K.
, and
Bozhevolnyi
,
S. I.
,
2010
, “
Plasmonics Beyond the Diffraction Limit
,”
Nat. Photonics
,
4
(
2
), p.
83
.
15.
Galvez
,
F.
,
Pérez de Lara
,
D.
,
Spottorno
,
J.
,
García
,
M. A.
, and
Vicent
,
J. L.
,
2017
, “
Heating Effects of Low Power Surface Plasmon Resonance Sensors
,”
Sens. Actuators, B
,
243
, p.
806
.
16.
Cennamo
,
N.
,
Massarotti
,
D.
,
Conte
,
L.
, and
Zeni
,
L.
,
2011
, “
Low Cost Sensors Based on SPR in a Plastic Optical Fiber for Biosensor Implementation
,”
Sensors
,
11
(
12
), p.
11752
.
17.
Nenninger
,
G.
,
Tobiška
,
P.
,
Homola
,
J.
, and
Yee
,
S.
,
2001
, “
Long-Range Surface Plasmons for High-Resolution Surface Plasmon Resonance Sensors
,”
Sens. Actuators, B
,
74
(
1–3
), p.
145
.
18.
Homola
,
J.
,
Yee
,
S.
, and
Gauglitz
,
G.
,
1999
, “
Surface Plasmon Resonance Sensors: Review
,”
Sens. Actuators, B
,
54
(
1–2
), p.
3
.
19.
Mayer
,
K.
, and
Hafner
,
J.
,
2011
, “
Localized Surface Plasmon Resonance Sensors
,”
Chem. Rev.
,
111
(
6
), p.
3828
.
20.
Huang
,
X.
, and
El-Sayed
,
M. A.
,
2010
, “
Gold Nanoparticles: Optical Properties and Implementations in Cancer Diagnosis and Photothermal Therapy
,”
J. Adv. Res.
,
1
(
1
), pp.
13
28
.
21.
Pan
,
Y.
,
Neuss
,
S.
,
Leifert
,
A.
,
Fischler
,
M.
,
Wen
,
F.
,
Simon
,
U.
,
Schmid
,
G.
,
Brandau
,
W.
,
Jahnen
, and
Dechent
,
W.
,
2007
, “
Size‐Dependent Cytotoxicity of Gold Nanoparticles
,”
Small
,
3
(
11
), pp.
1941
1949
.
22.
Chithrani
,
B. D.
,
Ghazani
,
A. A.
, and
Chan
,
W. C.
,
2006
, “
Determining the Size and Shape Dependence of Gold Nanoparticle Uptake Into Mammalian Cells
,”
Nano Lett.
,
6
(
4
), pp.
662
668
.
23.
Albanese
,
A.
, and
Chan
,
W. C.
,
2011
, “
Effect of Gold Nanoparticle Aggregation on Cell Uptake and Toxicity
,”
ACS Nano
,
5
(
7
), pp.
5478
5489
.
24.
Zeng
,
S.
,
Yong
,
K. T.
,
Roy
,
I.
,
Dinh
,
X. Q.
,
Yu
,
X.
, and
Luan
,
F.
,
2011
, “
A Review on Functionalized Gold Nanoparticles for Biosensing Applications
,”
Plasmonics
,
6
(
3
), p.
491
.
25.
Her
,
S.
,
Jaffray
,
D. A.
, and
Allen
,
C.
,
2017
, “
Gold Nanoparticles for Applications in Cancer Radiotherapy: Mechanisms and Recent Advancements
,”
Adv. Drug Delivery Rev.
,
109
, pp.
84
101
.
26.
Ghosh
,
P.
,
Han
,
G.
,
De
,
M.
,
Kim
,
C. K.
, and
Rotello
,
V. M.
,
2008
, “
Gold Nanoparticles in Delivery Applications
,”
Adv. Drug Delivery Rev.
,
60
(
11
), pp.
307
1315
.
27.
Rosi
,
N. L.
,
Giljohann
,
D. A.
,
Thaxton
,
C. S.
,
Lytton-Jean
,
A. K. R.
,
Han
,
M. S.
, and
Mirkin
,
C. A.
,
2006
, “
Oligonucleotide-Modified Gold Nanoparticles for Intracellular Gene Regulation
,”
Science
,
312
(
5776
), pp.
1027
1030
.
28.
Jain
,
P. K.
,
Lee
,
K. S.
,
El-Sayed
,
I. H.
, and
El-Sayed
,
M. A.
,
2006
, “
Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine
,”
J. Phys. Chem. B
,
110
(
14
), pp.
7238
7248
.
29.
Cordoba
,
M. A. S.
,
Boriskina
,
S. V.
,
Vollmer
,
F.
, and
Demirel
,
M. C.
,
2011
, “
Nanoparticle-Based Protein Detection by Optical Shift of a Resonant Microcavity
,”
Appl. Phys. Lett.
,
99
, p.
073701
.
30.
Xiao
,
Y. F.
,
Zou
,
C. L.
,
Li
,
B. B.
,
Li
,
Y.
,
Dong
,
C. H.
,
Han
,
Z. F.
, and
Gong
,
Q.
,
2010
, “
High-Q Exterior Whispering-Gallery Modes in a Metal-Coated Microresonator
,”
Phys. Rev. Lett.
,
105
(
15
), p.
153902
.
31.
Panich
,
S.
,
Wilson
,
K. A.
,
Nuttall
,
P.
,
Wood
,
C. K.
,
Albrecht
,
T.
, and
Edel
,
J. B.
,
2014
, “
Label-Free Pb(II) Whispering Gallery Mode Sensing Using Self- Assembled Glutathione-Modified Gold Nanoparticles on an Optical Microcavity
,”
Anal. Chem.
,
86
(
13
), pp.
6299
6306
.
32.
Manzo
,
M.
,
2017
, “
Temperature Compensation of Dye Doped Polymeric Microscale Lasers
,”
J. Polym. Sci., Part B: Polym. Phys.
,
55
(
10
), p.
789
.
33.
Martínez
,
J. C.
,
Chequer
,
N. A.
,
González
,
J. L.
, and
Cordova
,
T.
,
2012
, “
Alternative Methodology for Gold Nanoparticles Diameter Characterization Using PCA Technique and UV-Vis Spectrophotometry
,”
Nanosci. Nanotechnol.
,
2
(
6
), pp.
184
189
.
You do not currently have access to this content.