Recent advances in lower limb prostheses have involved the design of active, powered prosthetic knee and ankle-foot components capable of generating knee and ankle torques similar to that of normal gait. The associated componentry results in increased mass of the respective prosthesis, which affects the swing phase of gait. The goal of this study was to develop a computer model of the transfemoral residual limb and prosthesis, inclusive of an active ankle-foot, and investigate counter-mass magnitude(s) and location(s) via model optimization that might improve lower limb kinematic symmetry between the residual/prosthetic limb (approximated by the computer model) and the sound limb (approximated by able-bodied motion data) during swing phase. Single- (thigh only, shank only) and multisegment (both thigh and shank) optimization of counter-mass magnitudes and locations indicated that a 2.0 kg counter-mass added 8 cm distal and 10 cm posterior to the distal end of the knee unit within the shank segment approximated knee kinematics of the sound limb. This counter-mass location, however, reduced hip flexion during swing phase. While such a counter-mass location and magnitude demonstrated theoretical potential, the location is not clinically realistic; mass can only be practically added within the prosthesis, distal to the residual limb. Clinically, realistic counter-masses must also keep the total prosthetic mass to less than 5 kg; greater mass may require supplemental prosthetic suspension, may increase energy expenditure during ambulation and may increase the likelihood of fatigue, even with active prosthetic components. The ability to simulate the kinematic effects of active prosthetic components, inclusive of varying placement of battery and signal conditioning units, may advance the design of active prostheses that will minimize kinematic asymmetry and result in greater patient acceptance.

References

1.
NLLIC
,
2008
,
Limb Loss in the United States Fact Sheet
,
National Limb Loss Information Center and the Limb Loss Research and Statistics Program
, Amputee Coalition of America, Manassas, VA.
2.
Dillingham
,
T. R.
,
Pezzin
,
L. E.
, and
MacKenzie
,
E. J.
,
2002
, “
Limb Amputation and Limb Deficiency: Epidemiology and Recent Trends in the United States
,”
Southern Med. J.
,
95
(8), pp.
875
883
.
3.
Seroussi
,
R. E.
,
Gitter
,
A. J.
,
Czerniecki
,
J. M.
, and
Weaver
,
K.
,
1996
, “
Mechanical Work Adaptations of Above Knee Amputee Ambulation
,”
Archiv. Phys. Med. Rehabil.
,
77
(11), pp.
1209
1214
.10.1016/S0003-9993(96)90151-3
4.
Murray
,
M. P.
,
Sepic
,
S. B.
,
Gardner
,
G. M.
, and
Mollinger
,
L. A.
,
1980
, “
Gait Patterns of Above-Knee Amputees Using Constant-Friction Knee Components
,”
Bull. Prosth. Res. BPR 10–34
,
17
(
2
), pp.
35
45
.
5.
Murray
,
M. P.
,
Mollinger
,
L. A.
,
Sepic
,
S. B.
,
Gardner
,
G. M.
, and
Linder
,
M. T.
,
1983
, “
Gait Patterns in Above-Knee Amputee Patients: Hydraulic Swing Control vs Constant-Friction Knee Components
,”
Archiv. Phys. Med. Rehabil.
,
64
(8), pp.
339
345
.
6.
Nolan
,
L.
, and
Lees
,
A.
,
2000
, “
The Functional Demands on the Intact Limb During Walking for Active Trans-Femoral and Trans-Tibial Amputees
,”
Prosth. Ortho. Int.
,
24
(2), pp.
117
125
.10.1080/03093640008726534
7.
Perry
,
J.
, and
Burnfiend
,
J. M.
,
2010
,
Gait Analysis: Normal and Pathological Function
,
SLACK, Inc.
,
Thorofare, NJ
.
8.
Waters
,
R. L.
,
Hislop
,
H. J.
,
Perry
,
J.
,
Thomas
,
L.
, and
Campbell
,
J.
,
1983
, “
Comparative Cost of Walking in Young and Old Adults
,”
J. Orthopaed. Res.
,
1
(
1
), pp.
73
76
.10.1002/jor.1100010110
9.
Hollander
,
K. W.
,
Ilg
,
R.
,
Sugar
,
T. G.
, and
Herring
,
D.
,
2006
, “
An Efficient Robotic Tendon for Gait Assistance
,”
ASME J. Biomech. Eng.
,
128
(5), pp.
788
791
.10.1115/1.2264391
10.
Bellman
,
D.
,
Holgate
,
M. A.
, and
Sugar
,
T. G.
,
2008
, “
SPARKy 3: Design of an Active Robotic Ankle Prosthesis with Two Actuated Degrees of Freedon Using Regenerative Kinetics
,”
2nd IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics
(
BioRob 2008
), Scottsdale, AZ, October 19–22, pp.
511
516
.10.1109/BIOROB.2008.4762887
11.
Bergelin
,
B. J.
,
Mattos
,
J. O.
,
Wells
Jr.,
J. G.
, and
Voglewede
,
P. A.
,
2012
, “
Concept Through Preliminary Bench Testing of a Powered Lower Limb Prosthetic Device
,”
ASME J. Mech. Robot.
,
2
(4), p.
041005
.10.1115/1.4002205
12.
Bergelin
,
B. J.
, and
Voglewede
,
P. A.
,
2012
, “
Design of an Active Ankle-Foot Prosthesis Utilizing a Four-Bar Mechanism
,”
ASME J. Mech. Des.
,
134
(6), p.
061004
10.1115/1.4006436.
13.
Au
,
S. K.
,
Weber
,
J.
, and
Herr
,
H.
,
2007
, “
Biomechanical Design of a Powered Ankle-Foot Prosthesis
,” IEEE 10th International Conference on Rehabilitation Robotics (
ICORR 2007
), Noordwijk, Netherlands, June 13–15, pp.
298
303
.10.1109/ICORR.2007.4428441
14.
Au
,
S. K.
,
Herr
,
H.
,
Weber
,
J.
, and
Martinez-Villalpando
,
E. C.
,
2007
, “
Powered Ankle-Foot Prosthesis for the Improvement of Amputee Ambulation
,”
29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
EMBS 2007
), Lyon, France, August 22–26, pp.
3020
3026
.10.1109/IEMBS.2007.4352965
15.
Au
,
S. K.
,
Berniker
,
M.
, and
Herr
,
H.
,
2008
, “
Powered Ankle-Foot Prosthesis to Assist Level-Ground and Stair Descent Gaits
,”
Neural Netw.
,
21
(4), pp.
654
666
.10.1016/j.neunet.2008.03.006
16.
Au
,
S. K.
,
Weber
,
J.
, and
Herr
,
H.
,
2009
, “
Powered Ankle-Foot Prosthesis Improves Walking Metabolic Economy
,”
IEEE Trans. Robot.
,
25
(
1
), pp.
51
66
.10.1109/TRO.2008.2008747
17.
Sup
,
F.
,
Varol
,
H. A.
, and
Goldfarb
,
M.
,
2011
, “
Upslope Walking With a Powered Knee and Ankle Prosthesis: Initial Results With an Amputee Subject
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
19
(1), pp.
71
78
.10.1109/TNSRE.2010.2087360
18.
Sup
,
F.
,
Varol
,
H. A.
,
Mitchell
,
J.
, and
Withrow
,
T.
,
2008
, “
Design and Control of an Active Electrical Knee and Ankle Prosthesis
,”
2nd IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics
(
BioRob 2008
), Scottsdale, AZ, October 19–22, pp.
523
528
.10.1109/BIOROB.2008.4762811
19.
Mena
,
D.
,
Mansour
,
J. M.
, and
Simon
,
S. R.
,
1980
, “
Analysis and Synthesis of Human Swing Leg Motion During Gait and Its Clinical Applications
,”
J. Biomech.
,
14
(12), pp.
823
832
.10.1016/0021-9290(81)90010-5
20.
Tsai
,
C. S.
, and
Mansour
,
J. M.
,
1986
, “
Swing Phase Simulation and Design of Above Knee Prostheses
,”
ASME J. Biomech. Eng.
,
108
(1), pp.
65
72
.10.1115/1.3138582
21.
Beck
,
J. C.
, and
Czerniecki
,
J.
,
1994
, “
A Method for Optimization of Above-Knee Prosthetic Shank-Foot Inertial Characteristics
,”
Gait Posture
,
2
(2), pp.
75
84
.10.1016/0966-6362(94)90096-5
22.
Tashman
,
S.
,
Hicks
,
R.
, and
Jendrzejczyk
,
D.
,
1985
, “
Evaluation of a Prosthetic Shank With Variable Inertial Properties
,”
Clin. Prosth. Ortho.
,
9
(3), pp.
23
28
.
23.
Hale
,
S. A.
,
1990
, “
Analysis of the Swing Phase Dynamics and Muscular Effort of the Above-Knee Amputee for Varying Prosthetic Shank Loads
,”
Prosth. Ortho. Int.
,
14
(3), pp.
125
135
.10.3109/03093649009080338
24.
Gitter
,
A.
,
Czerniecki
,
J.
, and
Meinders
,
M.
,
1997
, “
Effect of Prosthetic Mass on Swing Phase Work During Above-Knee Amputee Ambulation
,”
Am. J. Phys. Med. Rehabil.
,
76
(2), pp.
114
121
.10.1097/00002060-199703000-00006
25.
Czerniecki
,
J. M.
,
Gitter
,
A.
, and
Weaver
,
K.
,
1994
, “
Effects of Alterations in Prosthetic Shank Mass on the Metabolic Costs of Ambulation in Above-Knee Amputees
,”
Am. J. Phys. Med. Rehabil.
,
73
(5), pp.
338
342
.10.1097/00002060-199409000-00008
26.
Russell
,
D.
,
2012
, “
Swing Weight of Baseball and Softball Bats
,”
Phys. Teach.
,
48
(7), pp.
471
474
.10.1119/1.3488193
27.
“What are the Details of the Woltring Filter?,”
2013
, Vicon, Edgewood, NY, accessed September 2, 2013, http://www.metrics.co.uk/support/solution_view.php?id=1098
28.
Telwak
,
M.
,
2013
, “
Determination of Optimal Counter-Mass Location in Active Prostheses for Transfemoral Amputees to Replicate Normal Swing,” Master's thesis, Marquette University, Milwaukee, WI.
29.
Winter
,
D. A.
,
1990
,
Biomechanics and Motor Control of Human Movement
, 2nd ed.,
Wiley
,
New York
, pp.
56
57
.
30.
Boyda Glaister
,
C. L.
,
2005
, “
A Functional Comparison of Two Types of Prosthetic Knee Designs
,” Master's thesis. Marquette University, Milwaukee, WI.
31.
Malanga
,
G.
, and
Delisa
,
J. A.
,
1998
, “
Clinical Observation
,”
Gait Analysis in the Science of Rehabilitation
,
U.S.
,
Department of Veterans Affairs
, Washington, DC, pp.
1
11
.
32.
Jaegers
,
S. M.
,
Arendzen
,
J. H.
, and
Jongh
,
H. J. d.
,
1996
, “
An Electromyographic Study of the Hip Muscles of Transfemoral Amputees in Walking
,”
Clin. Ortho. Related Res.
,
328
, pp.
119
128
.10.1097/00003086-199607000-00020
33.
Hong
,
J. H.
, and
Mun
,
M. S.
,
2005
, “
Relationship Between Socket Pressure and EMG of Two Muscles in Trans-Femoral Stumps During Gait
,”
Prosth. Ortho. Int.
,
29
(
1
), pp.
59
72
.10.1080/03093640500116764
34.
Czerniecki
,
J. M.
,
1996
, “
Rehabilitation in Limb Deficiency. 1. Gait and Motion Analysis
,”
Arch. Phys. Med. Rehabil.
,
77
(3 Suppl.), pp.
S3
S8
.10.1016/S0003-9993(96)90236-1
You do not currently have access to this content.