This paper describes the design and performance of a new prosthetic hand capable of multiple grasp configurations, and capable of fingertip forces and speeds comparable to those used by healthy subjects in typical activities of daily living. The hand incorporates four motor units within the palm, which together drive sixteen joints through tendon actuation. Each motor unit consists of a brushless motor that drives one or more tendons through a custom two-way clutch and pulley assembly. After presenting the design of the prosthesis, the paper presents a characterization of the hand’s performance. This includes its ability to provide eight grasp postures, as well as its ability to provide fingertip forces and finger speeds comparable to those described in the biomechanics literature corresponding to activities of daily living.

References

1.
Kamikawa
,
Y.
, and
Maeno
,
T.
, 2008, “
Underactuated Five-Finger Prosthetic Hand Inspired by Grasping Force Distribution of Humans
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Sept.,
Nice
,
France
, pp.
717
722
.
2.
Pons
,
J. L.
,
Rocon
,
E.
,
Ceres
,
R.
,
Reynaerts
,
D.
,
Saro
,
B.
,
Levin
,
S.
, and
Van Moorleghem
,
W.
, 2004, “
The MANUS-HAND Dextrous Robotics Upper Limb Prosthesis Mechanical and Manipulation Aspects
,”
Auton. Rob.
,
16
(
2
), pp.
143
163
.
3.
Chu
,
J. U.
,
Jung
,
D. H.
, and
Lee
,
Y. J.
, 2008, “
Design and Control of a Multifunction Myoelectric Hand with New Adaptive Grasping and Self-Locking Mechanisms
,”
Proc. 2008 IEEE Conf. on Robotics and Automation
, May,
Pasadena
,
USA
, pp.
743
748
.
4.
Cipriani
,
C.
,
Controzzi
,
M.
, and
Carrozza
,
M. C.
, 2009, “
Progress Towards the Development of the Smarthand Transradial Prosthesis
,”
Proc. 2009 IEEE Conf on Rehabilitation Robotics
, June,
Kyoto, Japan
, pp.
682
687
.
5.
Cipriani
,
C.
,
Controzzi
,
M.
, and
Carrozza
,
M. C.
, 2010, “
Objectives, Criteria and Methods for the Design of the Smarthand Transradial Prosthesis
,”
Robotica
28
, pp.
919
927
.
6.
Light
,
C. M.
, and
Chappel
,
P. H.
, 2000, “
Development of a Lightweight and Adaptable Multiple-Axis Hand Prosthesis
,”
Med. Eng. Phys.
22
, pp.
679
684
.
7.
Jung
,
S.
, and
Moon
,
I.
, 2008, “
Grip Force Modeling of a Tendon-Driven Prosthetic Hand
,”
Int. Conf. on Control, Automation, and Systems
,
Seoul, Korea
, pp.
2006
2009
.
8.
Pylatiuk
,
C.
,
Mounier
,
S.
,
Kargov
,
A.
,
Schulz
,
S.
, and
Bretthauer
,
G.
, 2004, “
Progress in the Development of a Multifunctional Hand Prosthesis
,”
Proc. 2004 IEEE Engineering in Medicine and Biology Society
, Sept.,
San Francisco, USA
, vol.
2
, pp.
4260
4263
.
9.
Kargov
,
A.
,
Pylatiuk
,
C.
,
Oberle
,
R.
,
Klosek
,
H.
,
Werner
,
T.
,
Roessler
,
W.
, and
Schulz
,
S.
, 2007, “
Development of a Multifunctional Cosmetic Prosthetic Hand
,”
Proc. 2007 IEEE 10th Int. Conf. on Rehabilitation Robotics
,
Noordwijk, Netherlands
, pp.
550
553
.
10.
Dalley
,
S. A.
,
Wiste
,
T. E.
,
Varol
,
H. A.
, and
Goldfarb
,
M.
, 2009, “
Design of a Multifunctional Anthropomorphic Prosthetic Hand with Extrinsic Actuation
,”
IEEE Trans. Mechatron.
14
(
6
), pp.
699
706
.
11.
Taylor
,
C. L.
, and
Schwarz
,
R. J.
, 1955, “
The Anatomy And Mechanics of the Human Hand
,”
Artif. Limbs:Rev. Curr. Develop.
2
(
2
), pp.
22
35
.
12.
Cutkosky
,
M. R.
, 1989, “
On Grasp Choice, Grasp Models, and the Design of Hands for Manufacturing Tasks
,”
IEEE Trans. Rob. Autom.
,
5
(
3
), pp.
269
279
13.
Jacobson-Sollerman
,
C.
, and
Sperling
,
L.
, 1977, “
Grip Function of the Healthy Hand in a Standardized Hand Function Test
,”
Scand. J. Rehabil. Med.
9
, pp.
123
129
.
14.
Sollerman
,
C.
, and
Ejeskar
,
V.
, 1995, “
Sollerman Hand Function Test: A Standardized Method And Its Use In Tetraplegic Patients
,”
Scand. J. Plast. Reconstr. Surg. Hand Surg.
29
(
2
), pp.
167
176
.
15.
Pylatuik
,
C.
,
Kargov
,
A.
,
Schulz
,
S.
, and
Doderlein
,
L.
, 2006, “
Distribution of Grip Force in Three Different Functional Prehension Patterns
,”
J. Med. Eng. Technol.
30
(
3
), pp.
176
182
.
16.
Kargov
,
A.
,
Pylatuik
,
C.
,
Martin
,
J.
,
Schulz
,
S.
, and
Doderlein
,
L.
, 2004, “
A Comparison of the Grip Force Distribution in Natural Hands and in Prosthetic Hands
,”
Disabil. Rehabil.
26
(
12
), pp.
705
711
.
17.
Smaby
,
N.
,
Johanson
,
M. E.
,
Baker
,
B.
,
Kenney
,
D. E.
,
Murray
,
W. M.
, and
Hentz
,
V. R.
, 2004, “
Identification of Key Pinch Forces Required to Complete Functional Tasks
,”
J. Rehabil. Res. Dev.
41
(
2
), pp.
215
224
.
18.
Radwin
,
R. G.
,
Oh
,
S.
,
Jensen
,
T. R.
, and
Webster
,
J. G.
, 1992. “
External Finger Forces in Submaximal Five-Finger Static Pinch Prehension
,”
Ergonomics
35
(
3
), pp.
275
288
.
19.
Fowler
,
N. K.
, and
Nicol
,
A.C.
, 1999, “
Measurement of External Three-Dimensional Interphalangeal Loads Applied During Activities of Daily Living
,”
Clin. Biomech.
14
, pp.
646
652
.
20.
Purves
,
W. K.
, and
Berme
,
N.
, 1980, “
Resultant Finger Joint Loads in Selected Activities
,”
J. Biomed. Eng.
2
, pp.
285
289
.
21.
Redmond
,
B.
,
Aina
,
R.
,
Gorti
,
T.
, and
Hannaford
,
B.
, 2010, “
Haptic characteristics of some activities of daily living
,” In
North American Haptics Symposium 2010
, March,
Waltham, USA
.
22.
Weir
,
R. F.
, 2003, “
Design of Artificial Arms and Hands for Prosthetic Applications
,” in
Standard Handbook of Biomedical Engineering and Design
,
K. P.
McCombs
, ed.,
McGraw Hill
,
New York
, pp.
32.1
32.61
.
23.
Silcox
,
D. H.
,
Rooks
,
M. D.
,
Vogel
,
R. R.
, and
Fleming
,
L.L.
, 1993, “
Myoelectric Prostheses. A Long-Term Follow-Up and a Study of the Use of Alternate Prostheses
,”
J. Bone Jt. Surg., Am.
75
, pp.
1781
1781
.
24.
Atkins
,
D. J.
,
Heard
,
D. C. J.
,
Donovan
,
W. H.
, 1996, “
Epidemiologic Overview Of Individuals with Upper-Limb Loss and Their Reported Research Priorities
,”
J. Prosthetics Orthotics
8
(
1
), pp.
85
92
.
25.
Kyberd
,
P. J.
,
Davey
,
J. J.
, and
Morrison
,
J. D.
, 1998, “
A Survey of Upper-Limb Prosthesis Users in Oxfordshire
,”
J. Prosthetics Orthotics
10
(
4
), pp.
85
92
.
26.
Clauser
,
C. E.
,
McConville
,
J. T.
, and
Young
,
J. M.
, 1969, “
Weight, Volume and Center of Mass of Segments of the Human Body
,” AMRL-TR-69-70, Wright Patterson Airforce Base, Dayton, Ohio.
27.
Pylatiuk
,
C.
, and
Schulz
,
S.
, 2005, “
Using The Internet for an Anonymous Survey of Myoelectrical Prosthesis Wearers
,”
Proceedings of the Myoelectric Controls Symposium
, August,
Fredericton, Canada
, pp.
255
257
.
You do not currently have access to this content.