This work proposes a small, light, valveless pump design for a portable renal replacement system. By analyzing the working principle of the pump and exploring the design space using an analytical pump model, we developed a novel design for a cam-driven finger pump. Several cams sequentially compress fingers, which compress flexible tubes; thus eliminating valves. Changing the speed of the motor or size of the tube controls the flow rate. In vitro experiments conducted with whole blood using the pump measured Creatinine levels over time, and the results verify the design for the portable renal replacement system. The proposed pump design is smaller than 153 cm3 and consumes less than 1 W while providing a flow rate of more than 100 ml/min for both blood and dialysate flows. The smallest pump of a portable renal replacement system in the literature uses check valves, which considerably increase the overall manufacturing cost and possibility of blood clotting. Compared to that pump, the proposed pump design achieved reduction in size by 52% and savings in energy consumption by 89% with the removal of valves. This simple and reliable design substantially reduces the size requirements of a portable renal replacement system.

References

1.
Kerr
,
P. B.
,
Argiles
,
A.
,
Flavier
,
J.
,
Canaud
,
B.
, and
Mion
,
C. M.
, 1992, “
Comparison of Hemodialysis and Hemodiafiltration: A Long-Term Longitudinal Study
,”
Kidney International
,
41
, pp.
1035
1040
.
2.
Daugirdas
,
J. T.
, 1993, “
Second Generation Logarithmic Estimates of Single-Pool Variable Volume Kt/V: An Analysis of Error
,”
Journal of the American Society of Nephrology
,
4
, pp.
1205
1213
.
3.
Kjellstrand
,
C. M.
, and
Ing
,
T.
, 1998, “
Daily Hemodialysis: History and Revival of a Superior Dialysis Method
,”
ASAIO Journal
,
44
, pp.
115
122
.
4.
Piccoli
,
G. B.
,
Bechis
,
F.
,
Iacuzzo
,
C.
,
Anania
,
P.
,
Iadarola
,
A. M.
,
Mezza
,
E.
,
Vischi
,
M.
,
Gai
,
M.
,
Martino
,
B.
,
Garofletti
,
Y.
,
Jeantet
,
A.
, and
Segoloni
,
G. P.
, 2000, “
Why Our Patients Like Daily Hemodialysis
,”
Hemodialysis International
,
4
, pp.
47
50
.
5.
Mastrangelo
,
F.
,
Alfonso
,
L.
,
Napoli
,
M.
,
DeBlasi
,
V.
,
Russo
,
F.
, and
Patruno
,
P
, 1998, “
Dialysis With Increased Frequency of Sessions (Lecce Dialysis)
,”
Nephrol Dial Transplant
,
13
, pp.
139
147
.
6.
Locatelli
,
F.
,
Canaud
,
B.
,
Köhler
,
H.
,
Petitclerc
,
T.
, and
Zucchelli
,
P.
, 2005, “
Dialysis Dose and Frequency
,”
Nephrology Dialysis Transplantation
,
20
, pp.
285
296
.
7.
Fissell
,
W. H.
Fleischman
,
A. J.
Humes
,
H. D.
, and
Roy
,
S.
, 2007, “
Development of Continuous Implantable Renal Replacement: Past and Future
,”
Translational Research
,
150
, pp.
327
336
.
8.
Ronco
,
C.
,
Davenport
,
A.
, and
Gura
,
V.
, 2008, “
Toward the Wearable Artificial Kidney
,”
Hemodialysis International
,
12
(
S1
), pp.
40
47
.
9.
Gura
,
V.
,
Beizai
,
M.
,
Ezon
,
C.
, and
Polaschegg
,
H. D.
, 2005, “
Continuous Renal Replacement Therapy for End-Stage Renal Disease. The Wearable Artificial Kidney (WAK)
,”
Contributions to Nephrology
,
149
, pp.
325
33
.
10.
Olson
,
J. C.
,
Weaver
,
J. D.
,
Yang
,
Y.
,
Ku
,
D. N.
, and
Rosen
,
D.W.
, 2009, “
Design of a Portable Renal Replacement System Through Modeling and Experiment
,”
ASME Frontiers in Biomedical Devices
,
Irvine, CA
.
11.
Olson
,
J.C.
, 2009, “
Design and Modeling of a Portable Hemodialysis System
,” Master of Science in Mechanical Engineering Thesis, Georgia Institute of Technology, Atlanta, GA.
12.
Gura
,
V.
, and
Rambod
,
E.
, 2007, “
Dual-Ventricle Pump Cartridge, Pump and Method of Use in a Wearable Continuous Renal Replacement Therapy Device
,” United States Patent 7854718.
13.
Nisar
,
A.
,
Afzulpurkar
,
N.
,
Tuantranont
,
A.
, and
Mahaisavariya
,
B.
, 2008, “
Three Dimensional Transient Multifield Analysis of a Piezoelectric Micropump for Drug Delivery System for Treatment of Hemodynamic Dysfunctions
,”
Cardiovascular Engineering
,
8
, pp.
203
18
.
14.
Ogami
,
M.
, 1986, “
Medicine Injector and Method of Using Same
,” United States Patent 4952124.
15.
Bertoncini
,
J.
, 1994, “
Peristaltic Pump and Method for Adjustable Flow Regulation
,” United States Patent 5318413.
16.
Kobayashi
,
S.
, 1983, “
Method and Apparatus for Detecting Occlusion in Fluid-Infusion Tube of Peristaltic Type Fluid-Infusion Pump
,” United States Patent 4373525.
17.
Borsanyi
,
A. S.
, 1984, “
Peristaltic Fluid-Pumping Apparatus
,” United States Patent 4482347.
18.
Bradley
,
J.
, 1985, “
Linear Peristaltic Pump
,” United States Patent 4561830.
19.
Tsuji
,
T.
, and
Nagashori
,
N.
, 1987, “
Finger Peristaltic Infusion Pump
,” United States Patent 4653987.
20.
Kaplan
,
D. E.
,
Burkett
,
D.
, and
Warden
,
L.
, 1990, “
Linear Peristaltic Pump
,” United States Patent 4909710.
You do not currently have access to this content.