The use of biodegradable polymers in biomedical applications has been successful in nonload bearing applications, such as biodegradable implants for local drug delivery, and in simple load bearing situations such as surgical sutures and orthopedic fixation screws. The desire to incorporate these materials in more complex load bearing situations, such as tissue engineering scaffolds and endovascular or urethral stents, is strong, but the lack of constitutive models describing the evolution of biodegradable polymers over the course of degradation has severely hampered the rational design process for these more complex biodegradable medical applications. With the objective of predicting biodegradable stent behavior, we incorporated constitutive models of biodegradable polymeric materials in a computational setting and the mechanical response of three different stent designs were analyzed as degradation progressed. A thermodynamically consistent constitutive model for materials undergoing deformation-induced degradation was applied to a commonly employed biodegradable polymer system, poly(L-lactic acid), and its specific form was determined by corroboration against experimental data. Depreciation of mechanical properties due to degradation confers time-dependent characteristics to the response of the biodegradable material: the deformation imparted by a constant load increases over time, i.e. the body creeps, and the stress necessary to keep a fixed deformation decreases, i.e. the body relaxes. Biodegradable stents, when subjected to constant pressure in its exterior, deflect inwards and ultimately fail as the structure loses its mechanical integrity. The complex geometry of endovascular stents and their physiological loading conditions lead to inhomogeneous deformations, and consequently, inhomogeneous degradation ensues. Degradation is mostly confined to the bends of the stent rings and junction points, which are the locations that carry most of the deformation, whereas mostly undeformed connector bars remain less degraded. If failure occurs, it will occur most likely at those sensitive locations and large, nondegraded pieces can provoke severe embolic problems. Highly nonuniform degradation indicates that some stent designs are at higher risk for complications. Deformation patterns of stents made of a material that loses its integrity are different than those of permanent stents. Blind adaptation of permanent stent design concepts is ill-suited for biodegradable stent design. The time-dependent aspect of the implant not only must be taken into account but should also be used to interact with the body’s reaction and to enhance healing.

1.
Colombo
,
A.
, and
Karvouni
,
E.
, 2000, “
Biodegradable Stents: ‘Fulfilling the Mission and Stepping Away’
,”
Circulation
0009-7322,
102
(
4
), pp.
371
373
.
2.
Serruys
,
P. W.
,
Dejaegere
,
P.
,
Kiemeneij
,
F.
,
Macaya
,
C.
,
Rutsch
,
W.
,
Heyndrickx
,
G.
,
Emanuelsson
,
H.
,
Marco
,
J.
,
Legrand
,
V.
,
Materne
,
P.
,
Belardi
,
J.
,
Sigwart
,
U.
,
Colombo
,
A.
,
Goy
,
J. J.
,
Vandenheuvel
,
P.
,
Delcan
,
J.
, and
Morel
,
M. A.
, 1994, “
A Comparison of Balloon-Expandable-Stent Implantation With Balloon Angioplasty in Patients With Coronary-Artery Disease
,”
N. Engl. J. Med.
0028-4793,
331
(
8
), pp.
489
495
.
3.
Fischman
,
D. L.
,
Leon
,
M. B.
,
Baim
,
D. S.
,
Schatz
,
R. A.
,
Savage
,
M. P.
,
Penn
,
I.
,
Detre
,
K.
,
Veltri
,
L.
,
Ricci
,
D.
,
Nobuyoshi
,
M.
,
Cleman
,
M.
,
Heuser
,
R.
,
Almond
,
D.
,
Teirstein
,
P. S.
,
Fish
,
R. D.
,
Colombo
,
A.
,
Brinker
,
J.
,
Moses
,
J.
,
Shaknovich
,
A.
,
Hirshfeld
,
J.
,
Bailey
,
S.
,
Ellis
,
S.
,
Rake
,
R.
, and
Goldberg
,
S.
, 1994, “
A Randomized Comparison of Coronary-Stent Placement and Balloon Angioplasty in the Treatment of Coronary-Artery Disease
,”
N. Engl. J. Med.
0028-4793,
331
(
8
), pp.
496
501
.
4.
Grube
,
E.
,
Gerckens
,
U.
,
Muller
,
R.
, and
Bullesfeld
,
L.
, 2002, “
Drug Eluting Stents: Initial Experiences
,”
Z. Kardiol.
0300-5860,
91
(
3
), pp.
44
48
.
5.
Kastrati
,
A.
,
Dibra
,
A.
,
Eberle
,
S.
,
Stat
,
D.
,
Mehilli
,
J.
,
de Lezo
,
J. S.
,
Goy
,
J. -J.
,
Ulm
,
K.
, and
Schömig
,
A.
, 2005, “
Sirolimus-Eluting Stents Vs Paclitaxel-Eluting Stents in Patients With Coronary Artery Disease: Meta-Analysis of Randomized Trials
,”
JAMA, J. Am. Med. Assoc.
0098-7484,
294
(
7
), pp.
819
825
.
6.
Joner
,
M.
,
Finn
,
A. V.
,
Farb
,
A.
,
Mont
,
E. K.
,
Kolodgie
,
F. D.
,
Ladich
,
E.
,
Kutys
,
R.
,
Skorija
,
K.
,
Gold
,
H. K.
, and
Virmani
,
R.
, 2006, “
Pathology of Drug-Eluting Stents in Humans: Delayed Healing and Late Thrombotic Risk
,”
J. Am. Coll. Cardiol.
0735-1097,
48
(
1
), pp.
193
202
.
7.
Virmani
,
R.
,
Liistro
,
F.
,
Stankovic
,
G.
,
Di Mario
,
C.
,
Montorfano
,
M.
,
Farb
,
A.
,
Kolodgie
,
F. D.
, and
Colombo
,
A.
, 2002, “
Mechanism of Late In-Stent Restenosis After Implantation of a Paclitaxel Derivate-Eluting Polymer Stent System in Humans
,”
Circulation
0009-7322,
106
(
21
), pp.
2649
2651
.
8.
Duda
,
S. H.
,
Pusich
,
B.
,
Richter
,
G.
,
Landwehr
,
P.
,
Oliva
,
V. L.
,
Tielbeek
,
A.
,
Wiesinger
,
B.
,
Hak
,
J. B.
,
Tielemans
,
H.
,
Ziemer
,
G.
,
Cristea
,
E.
,
Lansky
,
A.
, and
Bérégi
,
J. P.
, 2002, “
Sirolimus-Eluting Stents for the Treatment of Obstructive Superficial Femoral Artery Disease: Six-Month Results
,”
Circulation
0009-7322,
106
(
12
), pp.
1505
1509
.
9.
Duda
,
S. H.
,
Bosiers
,
M.
,
Lammer
,
J.
,
Scheinert
,
D.
,
Zeller
,
T.
,
Tielbeek
,
A.
,
Anderson
,
J.
,
Wiesinger
,
B.
,
Tepe
,
G.
,
Lansky
,
A.
,
Mudde
,
C.
,
Tielemans
,
H.
, and
Beregi
,
J. P.
, 2005, “
Sirolimus-Eluting Versus Bare Nitinol Stent for Obstructive Superficial Femoral Artery Disease: The Sirocco Ii Trial
,”
J. Vasc. Interv. Radiol.
1051-0443,
16
(
3
), pp.
331
338
.
10.
Kastrati
,
A.
,
Hall
,
D.
, and
Schömig
,
A.
, 2000, “
Long-Term Outcome After Coronary Stenting
,”
Curr Control Trials Cardiovasc med
,
1
(
1
), pp.
48
54
.
11.
Laufman
,
H.
, and
Rubel
,
T.
, 1977, “
Synthetic Absorbable Sutures
,”
Surg. Gynecol. Obstet.
0039-6087,
145
(
4
), pp.
597
608
.
12.
Pietrzak
,
W. S.
,
Sarver
,
D. R.
, and
Verstynen
,
M. L.
, 1997, “
Bioabsorbable Polymer Science for the Practicing Surgeon
,”
J. Craniofac Surg.
1049-2275,
8
(
2
), pp.
87
91
.
13.
Langer
,
R.
, 1998, “
Drug Delivery and Targeting
,”
Nature (London)
0028-0836,
392
(
6679
), pp.
5
10
.
14.
Agrawal
,
C. M.
, and
Ray
,
R. B.
, 2001, “
Biodegradable Polymeric Scaffolds for Musculoskeletal Tissue Engineering
,”
J. Biomed. Mater. Res.
0021-9304,
55
(
2
), pp.
141
150
.
15.
Zidar
,
J.
,
Lincoff
,
A.
, and
Stack
,
R.
, 1994, “
Biodegradable Stents
,”
Textbook of Interventional Cardiology
,
Saunders
,
Philadelphia
.
16.
Peng
,
T.
,
Gibula
,
P.
,
Yao
,
K. -D.
, and
Goosen
,
M. F. A.
, 1996, “
Role of Polymers in Improving the Results of Stenting in Coronary Arteries
,”
Biomaterials
0142-9612,
17
(
7
), pp.
685
694
.
17.
Weir
,
N. A.
,
Buchanan
,
F. J.
,
Orr
,
J. F.
, and
Dickson
,
G. R.
, 2004, “
Degradation of Poly-L-Lactide: Part 1: In Vitro and In Vivo Physiological Temperature Degradation
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
218
(
5
), pp.
307
319
.
18.
Gopferich
,
A.
, 1997, “
Mechanisms of Polymer Degradation and Elimination
,”
Handbook of Biodegradable Polymers
,
Harwood Academic
,
Australia
.
19.
Burkersroda
,
F. V.
,
Schedl
,
L.
, and
Gopferich
,
A.
, 2002, “
Why Degradable Polymers Undergo Surface Erosion or Bulk Erosion
,”
Biomaterials
0142-9612,
23
(
21
), pp.
4221
4231
.
20.
Bergstrom
,
J. S.
, and
Boyce
,
M. C.
, 1998, “
Constitutive Modeling of the Large Strain Time-Dependent Behavior of Elastomers
,”
J. Mech. Phys. Solids
0022-5096,
46
(
5
), pp.
931
954
.
21.
Kannan
,
K.
, and
Rajagopal
,
K. R.
, 2005, “
Simulation of Fiber Spinning Including Flow-Induced Crystallization
,”
J. Rheol.
0148-6055,
49
(
3
), pp.
683
703
.
22.
Soares
,
J. S.
, 2009, “
Diffusion of a Fluid Through a Spherical Elastic Solid Undergoing Large Deformations
,”
Int. J. Eng. Sci.
0020-7225,
47
, pp.
50
63
.
23.
Miller
,
N. D.
, and
Williams
,
D. F.
, 1984, “
The In Vivo and In Vitro Degradation of Poly(Glycolic Acid) Suture Material as a Function of Applied Strain
,”
Biomaterials
0142-9612,
5
(
6
), pp.
365
368
.
24.
Chu
,
C. C.
, 1985,
Strain-Accelerated Hydrolytic Degradation of Synthetic Absorbable Sutures
,
Surgical Research, Recent Developments: Proceedings of the First Annual Scientific Session of the Academy of Surgical Research
,
C. W.
Hall
, ed.,
Pergamon Press
,
San Antonio
, pp.
111
115
.
25.
Zhong
,
S. P.
,
Doherty
,
P. J.
, and
Williams
,
D. F.
, 1993, “
The Effect of Applied Strain on the Degradation of Absorbable Suture In Vitro
,”
Clinical Materials
,
14
(
3
), pp.
183
189
.
26.
Wiggins
,
M. J.
,
Anderson
,
J. M.
, and
Hiltner
,
A.
, 2003, “
Effect of Strain and Strain Rate on Fatigue-Accelerated Biodegradation of Polyurethane
,”
J. Biomed. Mater. Res. Part A
1549-3296,
66A
(
3
), pp.
463
475
.
27.
Wiggins
,
M. J.
,
Macewan
,
M.
,
Anderson
,
J. M.
, and
Hiltner
,
A.
, 2004, “
Effect of Soft-Segment Chemistry on Polyurethane Biostability During In Vitro Fatigue Loading
,”
J. Biomed. Mater. Res. Part A
1549-3296,
68A
(
4
), pp.
668
683
.
28.
Grabow
,
N.
,
Martin
,
H.
, and
Schmitz
,
K. P.
, 2002, “
The Impact of Material Characteristics on the Mechanical Properties of a Poly(L-Lactide) Coronary Stent
,”
Biomed. Tech.
0013-5585,
47
(
1
), pp.
503
505
.
29.
Nuutinen
,
J. P.
,
Clerc
,
C.
, and
Törmälä
,
P.
, 2003, “
Theoretical and Experimental Evaluation of the Radial Force of Self-Expanding Braided Bioabsorbable Stents
,”
J. Biomater. Sci., Polym. Ed.
0920-5063,
14
(
7
), pp.
677
687
.
30.
Waksman
,
R.
, 2007, “
Promise and Challenges of Bioabsorbable Stents
,”
Catheter Cardiovasc Interv
,
70
(
3
), pp.
407
414
.
31.
Moore
,
J. E.
,
Soares
,
J. S.
, and
Rajagopal
,
K. R.
, 2010, “
Biodegradable Stents: Biomechanical Modeling Challenges and Opportunities
,”
Cardiovascular Engineering and Technology
,
1
(
1
), pp.
52
65
.
32.
Välimaa
,
T.
,
Laaksovirta
,
S.
,
Tammela
,
T. L. J.
,
Laippala
,
P.
,
Talja
,
M.
,
Isotalo
,
T.
,
Pétas
,
A.
,
Taari
,
K.
, and
Törmälä
,
P.
, 2002, “
Viscoelastic Memory and Self-Expansion of Self-Reinforced Bioabsorbable Stents
,”
Biomaterials
0142-9612,
23
(
17
), pp.
3575
3582
.
33.
Tamai
,
H.
,
Igaki
,
K.
,
Kyo
,
E.
,
Kosuga
,
K.
,
Kawashima
,
A.
,
Matsui
,
S.
,
Komori
,
H.
,
Tsuji
,
T.
,
Motohara
,
S.
, and
Uehata
,
H.
, 2000, “
Initial and 6-Month Results of Biodegradable Poly-L-Lactic Acid Coronary Stents in Humans
,”
Circulation
0009-7322,
102
(
4
), pp.
399
404
.
34.
Grabow
,
N.
,
Schlun
,
M.
,
Sternberg
,
K.
,
Hakansson
,
N.
,
Kramer
,
S.
, and
Schmitz
,
K. P.
, 2005, “
Mechanical Properties of Laser Cut Poly(L-Lactide) Micro-Specimens: Implications for Stent Design, Manufacture, and Sterilization
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
1
), pp.
25
31
.
35.
Ormiston
,
J. A.
,
Webster
,
M. W. I.
, and
Armstrong
,
G.
, 2007, “
First-in-Human Implantation of a Fully Bioabsorbable Drug-Eluting Stent: The BVS Poly-L-Lactic Acid Everolimus-Eluting Coronary Stent
,”
Catheter Cardiovasc Interv
,
69
(
1
), pp.
128
131
.
36.
Agrawal
,
C. M.
,
Haas
,
K. F.
,
Leopold
,
D. A.
, and
Clark
,
H. G.
, 1992, “
Evaluation of Poly(L-Lactic Acid) as a Material for Intravascular Polymeric Stents
,”
Biomaterials
0142-9612,
13
(
3
), pp.
176
182
.
37.
Agrawal
,
C. M.
, and
Clark
,
H. G.
, 1992, “
Deformation Characteristics of a Bioabsorbable Intravascular Stent
,”
Invest. Radiol.
0020-9996,
27
(
12
), pp.
1020
1024
.
38.
Weir
,
N. A.
,
Buchanan
,
F. J.
,
Orr
,
J. F.
,
Farrar
,
D. F.
, and
Boyd
,
A.
, 2004, “
Processing, Annealing and Sterilisation of Poly-L-Lactide
,”
Biomaterials
0142-9612,
25
(
18
), pp.
3939
3949
.
39.
Su
,
S. -H.
,
Chao
,
R. Y. N.
,
Landau
,
C. L.
,
Nelson
,
K. D.
,
Timmons
,
R. B.
,
Meidell
,
R. S.
, and
Eberhart
,
R. C.
, 2003, “
Expandable Bioresorbable Endovascular Stent. I. Fabrication and Properties
,”
Ann. Biomed. Eng.
0090-6964,
31
(
6
), pp.
667
677
.
40.
Grabow
,
N.
,
Bünger
,
C. M.
,
Schultze
,
C.
,
Schmohl
,
K.
,
Martin
,
D. P.
,
Williams
,
S. F.
,
Sternberg
,
K.
, and
Schmitz
,
K. -P.
, 2007, “
A Biodegradable Slotted Tube Stent Based on Poly(L-Lactide) and Poly(4-Hydroxybutyrate) for Rapid Balloon-Expansion
,”
Ann. Biomed. Eng.
0090-6964,
35
(
12
), pp.
2031
2038
.
41.
Vaajanen
,
A.
,
Nuutinen
,
J. -P.
,
Isotalo
,
T.
,
Törmälä
,
P.
,
Tammela
,
T. L. J.
, and
Talja
,
M.
, 2003, “
Expansion and Fixation Properties of a New Braided Biodegradable Urethral Stent: An Experimental Study in the Rabbit
,”
J Urol
,
169
(
3
), pp.
1171
1174
.
42.
Rajagopal
,
K. R.
,
Srinivasa
,
A. R.
, and
Wineman
,
A. S.
, 2007, “
On the Shear and Bending of a Degrading Polymer Beam
,”
Int. J. Plast.
0749-6419,
23
(
9
), pp.
1618
1636
.
43.
Rajagopal
,
K. R.
, and
Wineman
,
A. S.
, 1992, “
A Constitutive Equation for Nonlinear Solids Which Undergo Deformation Induced Microstructural Changes
,”
Int. J. Plast.
0749-6419,
8
(
4
), pp.
385
395
.
44.
Soares
,
J. S.
, 2008, “
Constitutive Modeling of Biodegradable Polymers for Application in Endovascular Stents
,” Ph.D. thesis, Department of Mechanical Engineering, Texas A&M University, College Station, TX.
45.
Soares
,
J. S.
,
Moore
,
J. E.
, and
Rajagopal
,
K. R.
, 2008, “
Constitutive Framework for Biodegradable Polymers With Applications to Biodegradable Stents
,”
ASAIO J.
0162-1432,
54
(
3
), pp.
295
301
.
46.
Soares
,
J. S.
,
Rajagopal
,
K. R.
, and
Moore
,
J. E.
, Jr.
, 2010, “
Deformation-Induced Hydrolysis of a Degradable Polymeric Cylindrical Annulus
,”
Biomech. Model. Mechanobiol.
1617-7959,
9
, pp.
177
186
.
47.
Soares
,
J. S.
, and
Zunino
,
P.
, 2010, “
A Mixture Model for Water Uptake, Degradation, Erosion, and Drug Release From Polydisperse Polymeric Networks
,”
Biomaterials
0142-9612,
31
, pp.
3032
3042
.
48.
Lunt
,
J.
, 1998, “
Large-Scale Production, Properties and Commercial Applications of Polylactic Acid Polymers
,”
Polym. Degrad. Stab.
0141-3910,
59
(
1–3
), pp.
145
152
.
49.
Garlotta
,
D.
, 2001, “
A Literature Review of Poly(Lactic Acid)
,”
J. Polym. Environ.
1566-2543,
9
(
2
), pp.
63
84
.
50.
Truesdell
,
C.
, and
Noll
,
W.
, 2004,
The Non-Linear Field Theories of Mechanics
,
Springer-Verlag
,
Berlin, New York
.
51.
Nelson
,
K. D.
,
Romero
,
A.
,
Waggoner
,
P.
,
Crow
,
B.
,
Borneman
,
A.
, and
Smith
,
G. M.
, 2003, “
Technique Paper for Wet-Spinning Poly(L-Lactic Acid) and Poly(Dl-Lactide-Co-Glycolide) Monofilament Fibers
,”
Tissue Eng.
1076-3279,
9
(
6
), pp.
1323
1330
.
52.
Perego
,
G.
,
Cella
,
G. D.
, and
Bastioli
,
C.
, 1996, “
Effect of Molecular Weight and Crystallinity on Poly(Lactic Acid) Mechanical Properties
,”
J. Appl. Polym. Sci.
0021-8995,
59
(
1
), pp.
37
43
.
53.
Bedoya
,
J.
,
Meyer
,
C. A.
,
Timmins
,
L. H.
,
Moreno
,
M. R.
, and
Moore
,
J. E.
, Jr.
, 2006, “
Effects of Stent Design Parameters on Normal Artery Wall Mechanics
,”
ASME J. Biomech. Eng.
0148-0731,
128
(
5
), pp.
757
765
.
54.
Timmins
,
L. H.
,
Moreno
,
M. R.
,
Meyer
,
C. A.
,
Criscione
,
J. C.
,
Rachev
,
A.
, and
Moore
,
J. E.
, Jr.
, 2007, “
Stented Artery Biomechanics and Device Design Optimization
,”
Med. Biol. Eng. Comput.
0140-0118,
45
(
5
), pp.
505
513
.
55.
Moore
,
J. E.
, Jr.
, 2009, “
Biomechanical Issues in Endovascular Device Design
,”
J. Endovasc. Ther.
1526-6028,
16
(
I
), pp.
I1
I11
.
56.
Kachanov
,
L. M.
, 1986,
Introduction to Continuum Damage Mechanics
,
Martinus-Nijhoff
,
Dordrecht, The Netherlands
.
57.
Ogden
,
R. W.
, and
Roxburgh
,
D. G.
, 1999, “
A Pseudo-Elastic Model for the Mullins Effect in Filled Rubber
,”
Proc. R. Soc. London, Ser. A
0950-1207,
455
(
1988
), pp.
2861
2877
.
58.
Bernstein
,
B.
, and
Shokooh
,
A.
, 1980, “
The Stress Clock Function in Viscoelasticity
,”
J. Rheol.
0148-6055,
24
(
2
), pp.
189
211
.
59.
Wineman
,
A.
, and
Min
,
J. H.
, 1996, “
The Pressurized Cylinder Problem for Nonlinear Viscoelastic Materials With a Strain Clock
,”
Math. Mech. Solids
1081-2865,
1
(
4
), pp.
393
409
.
60.
Rajagopal
,
K. R.
, and
Wineman
,
A. S.
, 2004, “
A Note on Viscoelastic Materials That Can Age
,”
Int. J. Non-Linear Mech.
0020-7462,
39
(
10
), pp.
1547
1554
.
61.
Humphrey
,
J. D.
, 2002,
Cardiovascular Solid Mechanics: Cells, Tissues, and Organs
,
Springer
,
New York
.
62.
Fung
,
Y. C.
, 1972, “
Stress-Strain History Relations of Soft Tissues in Simple Elongation
,”
Biomechanics, Its Foundations and Objectives
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
63.
Knowles
,
J. K.
, and
Sternberg
,
E.
, 1978, “
Failure of Ellipticity and Emergence of Discontinuous Deformation Gradients in Plane Finite Elastostatics
,”
J. Elast.
0374-3535,
8
(
4
), pp.
329
379
.
64.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
, 1991,
The Finite Element Method. Solid and Fluid Mechanics, Dynamics and Nonlinearity
,
McGraw-Hill
,
New York
.
65.
Humphrey
,
J. D.
, and
Taylor
,
C. A.
, 2008, “
Intracranial and Abdominal Aortic Aneurysms: Similarities, Differences, and Need for a New Class of Computational Models
,”
Annu. Rev. Biomed. Eng.
1523-9829,
10
, pp.
221
246
.
You do not currently have access to this content.