Graphical Abstract Figure

Simulation of a MB cloud interacting with FUS propagation

Graphical Abstract Figure

Simulation of a MB cloud interacting with FUS propagation

Close modal

Abstract

Focused ultrasound (FUS), especially when augmented by microbubbles (MBs), shows the potential for noninvasive ablation of deep-seated tumors, but its clinical adoption is hindered due to its dependency on multiple controllable parameters of FUS and MBs. To accelerate the clinical transition of this noninvasive and target therapy, a virtual lab featuring a two-way coupled Euler–Lagrange computation platform, capable of capturing physics down to individual MBs thus their nonlinear interactions, has been developed to accurately predict the acoustic and thermal fields for microbubble-augmented FUS (MBaFus), and subsequently the resultant temperature rise at the treatment spots. This technical brief concisely summarizes the main features of its numerical algorithms for prediction and high-performance computing schemes for speedup, as well as its preliminary validation against in vitro experiments. Recent progress on further evaluating the numerical virtual lab under ex vivo settings is reported, where FUS treatment for ex vivo porcine liver was conducted and MB augmentation effects to treatment outcome under different MB conditions were compared. It is found that the agreement between our numerical prediction and experimental measurements in the referred ex vivo study is reasonably satisfactory. Though more extensive validations are needed when extra ex vivo studies in the public domain become available, this intermediate progress illustrates the potential of this novel numerical platform serving as a virtual lab of microbubble-augmented FUS for noninvasive tumor ablation.

References

1.
Kennedy
,
J. E.
,
Wu
,
F.
,
ter Haar
,
G. R.
,
Gleeson
,
F. V.
,
Phillips
,
R. R.
,
Middleton
,
M. R.
, and
Cranston
,
D.
,
2004
, “
High-Intensity Focused Ultrasound for the Treatment of Liver Tumours
,”
Ultrasonics
,
42
(
1–9
), pp.
931
935
.10.1016/j.ultras.2004.01.089
2.
Illing
,
R. O.
,
Kennedy
,
J. E.
,
Wu
,
F.
,
ter Haar
,
G. R.
,
Protheroe
,
A. S.
,
Friend
,
P. J.
,
Gleeson
,
F. V.
,
Cranston
,
D. W.
,
Phillips
,
R. R.
, and
Middleton
,
R.
,
2005
, “
The Safety and Feasibility of Extracorporeal High-Intensity Focused Ultrasound (HIFU) for the Treatment of Liver and Kidney Tumours in a Western Population
,”
Br. J. Cancer
,
93
(
8
), pp.
890
895
.10.1038/sj.bjc.6602803
3.
Wu
,
F.
,
ter Haar
,
G.
, and
Chen
,
W. R.
,
2007
, “
High-Intensity Focused Ultrasound Ablation of Breast Cancer
,”
Expert Rev. Anticancer Ther.
,
7
(
6
), pp.
823
831
.10.1586/14737140.7.6.823
4.
Blana
,
A.
,
Murat
,
F. J.
,
Walter
,
B.
,
Thuroff
,
S.
,
Wieland
,
W. F.
,
Chaussy
,
C.
, and
Gelet
,
A.
,
2008
, “
First Analysis of the Long-Term Results With Transrectal HIFU in Patients With Localised Prostate Cancer
,”
Eur. Urol.
,
53
(
6
), pp.
1194
1203
.10.1016/j.eururo.2007.10.062
5.
Richards
,
N.
,
Christensen
,
D.
,
Hillyard
,
J.
,
Kline
,
M.
,
Johnson
,
S.
,
Odéen
,
H.
, and
Payne
,
A.
,
2024
, “
Evaluation of Acoustic-Thermal Simulations of In Vivo Magnetic Resonance Guided Focused Ultrasound Ablative Therapy
,”
Int. J. Hyperthermia
,
41
(
1
), p.
2301489
.10.1080/02656736.2023.2301489
6.
Gandhi
,
D.
, and
Woodworth
,
G. F.
,
2024
, “
Incisionless Precision Surgery With MR Imaging-Guided Focused Ultrasound: A Look Into the Future
,”
Magn. Reson. Imaging Clin.
,
32
(
4
), pp.
xv
xvi
.10.1016/j.mric.2024.04.007
7.
Hynynen
,
K.
, and
Clement
,
G.
,
2007
, “
Clinical Applications of Focused Ultrasound—The Brain
,”
Int. J. Hyperthermia
,
23
(
2
), pp.
193
202
.10.1080/02656730701200094
8.
Paun
,
L.
,
Moiraghi
,
A.
,
Jannelli
,
G.
,
Nouri
,
A.
,
DiMeco
,
F.
,
Pallud
,
J.
,
Meling
,
T. R.
, et al.,
2021
, “
From Focused Ultrasound Tumor Ablation to Brain Blood Barrier Opening for High Grade Glioma: A Systematic Review
,”
Cancers
,
13
(
22
), p.
5614
.10.3390/cancers13225614
9.
Miller
,
D. L.
, and
Thomas
,
R. M.
,
1995
, “
Ultrasound Contrast Agents Nucleate Inertial Cavitation In Vitro
,”
Ultrasound Med. Biol.
,
21
(
8
), pp.
1059
1065
.10.1016/0301-5629(95)93252-U
10.
Tran
,
B. C.
,
Seo
,
J.
,
Hall
,
T. L.
,
Fowlkes
,
J. B.
, and
Cain
,
C. A.
,
2003
, “
Microbubble-Enhanced Cavitation for Noninvasive Ultrasound Surgery
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
50
(
10
), pp.
1296
1304
.10.1109/TUFFC.2003.1244746
11.
Tu
,
J.
,
Matula
,
T. J.
,
Brayman
,
A. A.
, and
Crum
,
L. A.
,
2006
, “
Inertial Cavitation Dose Produced in Ex Vivo Rabbit Ear Arteries With Optison by 1-MHz Pulsed Ultrasound
,”
Ultrasound Med. Biol.
,
32
(
2
), pp.
281
288
.10.1016/j.ultrasmedbio.2005.10.001
12.
Arvanitis
,
C. D.
,
Vykhodtseva
,
N.
,
Jolesz
,
F.
,
Livingstone
,
M.
, and
McDannold
,
N.
,
2016
, “
Cavitation-Enhanced Nonthermal Ablation in Deep Brain Targets: Feasibility in a Large Animal Model
,”
J. Neurosurg.
,
124
(
5
), pp.
1450
1459
.10.3171/2015.4.JNS142862
13.
Xu
,
Z.
,
Khokhlova
,
T. D.
,
Cho
,
C. S.
, and
Khokhlova
,
V. A.
,
2024
, “
Histotripsy: A Method for Mechanical Tissue Ablation With Ultrasound
,”
Annu. Rev. Biomed. Eng.
,
26
(
1
), pp.
141
167
.10.1146/annurev-bioeng-073123-022334
14.
Hamilton
,
M. F.
, and
Blackstock
,
D. T.
,
1998
,
Nonlinear Acoustics
,
Academic Press
,
San Diego, CA
.
15.
Bakhvalov
,
N. S.
,
Zhileĭkin
,
I. A. M.
, and
Zabolotskaia
,
E. A.
,
1987
,
Nonlinear Theory of Sound Beams
,
American Institute of Physics
, New York.
16.
Pennes
,
H. H.
,
1948
, “
Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm
,”
J. Appl. Physiol.
,
1
(
2
), pp.
93
122
.10.1152/jappl.1948.1.2.93
17.
Canney
,
M. S.
,
Khokhlova
,
V. A.
,
Bessonova
,
O. V.
,
Bailey
,
M. R.
, and
Crum
,
L. A.
,
2010
, “
Shock-Induced Heating and Millisecond Boiling in Gels and Tissue Due to High Intensity Focused Ultrasound
,”
Ultrasound Med. Biol.
,
36
(
2
), pp.
250
267
.10.1016/j.ultrasmedbio.2009.09.010
18.
Gheshlaghia
,
M.
,
Sadighi-Bonabib
,
R.
, and
Ghadirifarc
,
A.
,
2015
, “
The Effect of KZK Pressure Equation on the Sonoluminescence in Water and Fat Tissues
,”
Phys. Lett. A
,
379
(
36
), pp.
1951
1959
.10.1016/j.physleta.2015.06.045
19.
Ma
,
J.
,
Hsiao
,
C. T.
, and
Chahine
,
G. L.
,
2018
, “
Numerical Study of Acoustically Driven Bubble Cloud Dynamics Near a Rigid Wall
,”
Ultrason. Sonochem.
,
40
, pp.
944
954
.10.1016/j.ultsonch.2017.08.033
20.
Gnanaskandan
,
A.
,
Hsiao
,
C.-T.
, and
Chahine
,
G. L.
,
2019
, “
Modeling of Microbubble-Enhanced High-Intensity Focused Ultrasound
,”
Ultrasound Med. Biol.
,
45
(
7
), pp.
1743
1761
.10.1016/j.ultrasmedbio.2019.02.022
21.
Ma
,
J.
,
2023
, “
Keynote Lecture: 3DynaFS-MBaFUS—A Virtual Lab of Microbubble-Assisted Focused Ultrasound for Noninvasive Treatments of Neurodisorders
,”
Eighth International Conference on Neurology and Brain Disorders
,
Boston
, Oct. 19–21, p.
25
.
22.
The National Energy Research Scientific Computing Center
,
2015
, “
NERSC User Science Highlights
,”
NERSC
,
Berkeley, CA
, https://www.nersc.gov/assets/Science-Highlights-Presentations/NERSC-ScienceHighlightsMarch2015.pdf
23.
Ma
,
J.
,
Gnanaskandan
,
A.
,
Hsiao
,
C. T.
, and
Chahine
,
G. L.
,
2021
, “
Message Passing Interface Parallelization for Two-Way Coupled Euler-Lagrange Simulation of Microbubble Enhanced HIFU
,”
ASME J. Fluids Eng.
,
143
(
8
), p.
081105
.10.1115/1.4051148
24.
Ma
,
J.
,
Deng
,
X.
,
Hsiao
,
C. T.
, and
Chahine
,
G. L.
,
2023
, “
Hybrid Message-Passing Interface-Open Multiprocessing Accelerated Euler–Lagrange Simulations of Microbubble Enhanced HIFU for Tumor Ablation
,”
ASME J. Biomech. Eng.
,
145
(
7
), p.
071005
.10.1115/1.4057050
25.
Okita
,
K.
,
Sugiyama
,
K.
,
Takagi
,
S.
, and
Matsumto
,
Y.
,
2013
, “
Microbubble Behavior in an Ultrasound Field for High Intensity Focused Ultrasound Therapy Enhancement
,”
J. Acoust. Soc. Am.
,
134
(
2
), pp.
1576
1585
.10.1121/1.4812880
26.
Juang
,
E. K.
,
De Koninck
,
L. H.
,
Vuong
,
K. S.
,
Gnanaskandan
,
A.
,
Hsiao
,
C.-T.
, and
Averkiou
,
M. A.
,
2023
, “
Controlled Hyperthermia With High-Intensity Focused Ultrasound and Ultrasound Contrast Agent Microbubbles in Porcine Liver
,”
Ultrasound Med. Biol.
,
49
(
8
), pp.
1852
1860
.10.1016/j.ultrasmedbio.2023.04.015
27.
Pelanti
,
M.
, and
Shyue
,
K.-M.
,
2014
, “
A Mixture-Energy-Consistent Six-Equation Two-Phase Numerical Model for Fluids With Interfaces, Cavitation and Evaporation Waves
,”
J. Comput. Phys.
,
259
, pp.
331
357
.10.1016/j.jcp.2013.12.003
28.
Colella
,
P.
,
1985
, “
A Direct Eulerian MUSCL Scheme for Gas Dynamics
,”
SIAM J. Sci. Stat. Comput.
,
6
(
1
), pp.
104
117
.10.1137/0906009
29.
Kapahi
,
A.
,
Hsiao
,
C.
, and
Chahine
,
G.
,
2015
, “
A Multi-Material Flow Solver for High Speed Compressible Flows
,”
Comput. Fluids
,
115
, pp.
25
45
.10.1016/j.compfluid.2015.03.016
30.
Plesset
,
M. S.
, and
Prosperetti
,
A.
,
1977
, “
Bubble Dynamics and Cavitation
,”
Annu. Rev. Fluid Mech.
,
9
(
1
), pp.
145
185
.10.1146/annurev.fl.09.010177.001045
31.
Johnson
,
V. E.
, and
Hsieh
,
T.
,
1966
, “
The Influence of the Trajectories of Gas Nuclei on Cavitation Inception
,”
Sixth Symposium on Naval Hydrodynamics
, Washington, DC, Sept. 28–Oct. 4, pp.
163
179
.
32.
Ma
,
J.
,
Hsiao
,
C. T.
, and
Chahine
,
G. L.
,
2015
, “
Spherical Bubble Dynamics in a Bubbly Medium Using an Euler–Lagrange Model
,”
Chem. Eng. Sci.
,
128
, pp.
64
81
.10.1016/j.ces.2015.01.056
33.
Ma
,
J.
,
Hsiao Hsiao
,
C. T.
, and
Chahine
,
G. L.
,
2015
, “
Euler-Lagrange Simulations of Bubble Cloud Dynamics Near a Wall
,”
ASME J. Fluids Eng.
,
137
(
4
), p.
041301
.10.1115/1.4028853
34.
Huang
,
J.
,
2002
, “
Heating in Vascular Tissue and Flow-Through Tissue Phantoms Induced by Focused Ultrasound
,” Ph.D. thesis,
Boston University
,
Boston, MA
.https://open.bu.edu/server/api/core/bitstreams/70c03eee-e2d3-4792-b1ca-e30dd307189b/content
35.
Chen
,
C.
,
Sheeran
,
P. S.
,
Wu
,
S.
,
Olumolade
,
O.
,
Dayton
,
P. A.
, and
Konofagou
,
E. E.
,
2013
, “
Targeted Drug Delivery With Focused Ultrasound-Induced Blood-Brain Barrier Opening Using Acoustically-Activated Nanodroplets
,”
J. Controlled Release
,
172
(
3
), pp.
795
804
.10.1016/j.jconrel.2013.09.025
You do not currently have access to this content.