Graphical Abstract Figure

Smart kidney stone basket with force feedback for enhanced surgical precision.

Graphical Abstract Figure

Smart kidney stone basket with force feedback for enhanced surgical precision.

Close modal

Abstract

Ureteroscopy with stone extraction devices is a common treatment for urolithiasis but carries risks, such as ureteral wall avulsion due to excessive withdrawal forces. These forces arise from friction between the stone basket and the ureteral wall, and existing devices lack real-time feedback, relying on the surgeon's tactile judgment, which may lead to preventable injuries. This study addresses this gap by developing a system to measure and monitor withdrawal forces during stone retrieval. The system integrates a linear variable differential transformer (LVDT) sensor, Arduino microcontroller, calibrated spring mechanism, and a kidney stone basket, providing force feedback categorized into safe, cautionary, and high-risk zones. Bench-top trials demonstrated its reliability, with force measurement accuracy (variance ±0.05 N) and classification into safe (<5.396 N), cautious (5.396 N–9.809 N), and dangerous (>9.809 N) zones, in line with thresholds for tissue damage reported in literature. The system demonstrated force control within safe thresholds, reducing excessive withdrawal force incidents by an estimated 30% compared to conventional tactile-based extraction, potentially lowering the risk of ureteral injuries such as perforation and avulsion. Additionally, this feedback mechanism can be incorporated into ureteroscopy simulators and surgical training programs, allowing residents to visualize force applications in real-time and develop safer extraction techniques. By providing quantitative force thresholds, the system enables objective skill assessment and structured training exercises, helping residents refine techniques before performing procedures. Future research will focus on clinical validation and expanding the system's capabilities to improve surgical outcomes.

References

1.
Scales
,
C. D.
,
Smith
,
A. C.
,
Hanley
,
J. M.
, and
Saigal
,
C. S.
,
2012
, “
Prevalence of Kidney Stones in the United States
,”
Eur. Urol.
,
62
(
1
), pp.
160
165
.10.1016/j.eururo.2012.03.052
2.
Leone
,
N. T.
,
Garcia-Roig
,
M.
, and
Bagley
,
D. H.
,
2010
, “
Changing Trends in the Use of Ureteroscopic Instruments From 1996 to 2008
,”
J. Endourol.
,
24
(
3
), pp.
361
365
.10.1089/end.2009.0222
3.
Preminger
,
G. M.
,
Tiselius
,
H.-G.
,
Assimos
,
D. G.
,
Alken
,
P.
,
Buck
,
C.
,
Gallucci
,
M.
,
Knoll
,
T.
, et al.,
2007
, “
2007 Guideline for the Management of Ureteral Calculi
,”
J. Urol.
,
178
(
6
), pp.
2418
2434
.10.1016/j.juro.2007.09.107
4.
Elashry
,
O. M.
,
Elgamasy
,
A. K.
,
Sabaa
,
M. A.
,
Abo‐Elenien
,
M.
,
Omar
,
M. A.
,
Eltatawy
,
H. H.
, and
El‐Abd
,
S. A.
,
2008
, “
Ureteroscopic Management of Lower Ureteric Calculi: A 15-Year Single-Centre Experience
,”
BJU Int.
,
102
(
8
), pp.
1010
1017
.10.1111/j.1464-410X.2008.07747.x
5.
Krambeck
,
A. E.
,
Murat
,
F. J.
,
Gettman
,
M. T.
,
Chow
,
G. K.
,
Patterson
,
D. E.
, and
Segura
,
J. W.
,
2006
, “
The Evolution of Ureteroscopy: A Modern Single-Institution Series
,”
Mayo Clin. Proc.
,
81
(
4
), pp.
468
473
.10.4065/81.4.468
6.
Pedro
,
R. N.
,
Hendlin
,
K.
,
Weiland
,
D.
,
Ramani
,
A.
,
Köhler
,
T. S.
,
Anderson
,
J. K.
, and
Monga
,
M.
,
2007
, “
In Vitro Evaluation of Ureteral Perforation Forces
,”
Urology
,
70
(
3
), pp.
592
594
.10.1016/j.urology.2007.04.050
7.
Schuster
,
T. G.
,
Hollenbeck
,
B. K.
,
Faerber
,
G. J.
, and
Wolf
,
J. S.
,
2001
, “
Complications of Ureteroscopy: Analysis of Predictive Factors
,”
J. Urol.
,
166
(
2
), pp.
538
540
.10.1016/S0022-5347(05)65978-2
8.
Hart
,
J. B.
,
1967
, “
Avulsion of Distal Ureter With Dormia Basket
,”
J. Urol.
,
97
(
1
), pp.
62
63
.10.1016/S0022-5347(17)62979-3
9.
Tanimoto
,
R.
,
Cleary
,
R. C.
,
Bagley
,
D. H.
, and
Hubosky
,
S. G.
,
2016
, “
Ureteral Avulsion Associated With Ureteroscopy: Insights From the MAUDE Database
,”
J. Endourol.
,
30
(
3
), pp.
257
261
.10.1089/end.2015.0242
10.
Reed
,
A. M.
,
Christensen
,
C. L.
, and
Allam
,
C. L.
,
2021
, “
Duration of Ureteral Stenting Following Ureteroscopic Perforation in a Porcine Model
,”
J. Endourol.
,
35
(
3
), pp.
259
265
.10.1089/end.2020.0449
11.
Shekar
,
P. A.
,
Kochhar
,
G.
,
Reddy
,
D.
, and
Dumra
,
A.
,
2020
, “
Management of Ureteric Avulsion During Ureteroscopy: A Systematic Review and Our Experience
,”
Afr. J. Urol.
,
26
(
1
), p.
58
.10.1186/s12301-020-00078-x
12.
Kramolowsky
,
E. V.
,
1987
, “
Ureteral Perforation During Ureterorenoscopy: Treatment and Management
,”
J. Urol.
,
138
(
1
), pp.
36
38
.10.1016/S0022-5347(17)42979-X
13.
Hodge
,
J.
,
1973
, “
Avulsion of a Long Segment of Ureter With Dormia Basket
,”
Br. J. Urol.
,
45
(
3
), pp.
328
328
.10.1111/j.1464-410X.1973.tb12164.x
14.
Huffman
,
J. L.
,
1989
, “
Ureteroscopic Injuries to the Upper Urinary Tract
,”
Urol. Clin. North Am.
,
16
(
2
), pp.
249
254
.10.1016/S0094-0143(21)01502-0
15.
Ge
,
C.
,
Li
,
Q.
,
Wang
,
L.
,
Jin
,
F.
,
Li
,
Y.
,
Wan
,
J.
,
Lan
,
W.
, and
Liang
,
P.
,
2011
, “
Management of Complete Ureteral Avulsion and Literature Review: A Report on Four Cases
,”
J. Endourol.
,
25
(
2
), pp.
323
326
.10.1089/end.2010.0303
16.
Al-Awadi
,
K.
,
Kehinde
,
E. O.
,
Al-Hunayan
,
A.
, and
Al-Khayat
,
A.
,
2005
, “
Iatrogenic Ureteric Injuries: Incidence, Aetiological Factors and the Effect of Early Management on Subsequent Outcome
,”
Int. Urol. Nephrol.
,
37
(
2
), pp.
235
241
.10.1007/s11255-004-7970-4
17.
Gao
,
P.
,
Zhu
,
J.
,
Zhou
,
Y.
, and
Shan
,
Y.
,
2013
, “
Full-Length Ureteral Avulsion Caused by Ureteroscopy: Report of One Case Cured by Pyeloureterostomy, Greater Omentum Investment, and Ureterovesical Anastomosis
,”
Urolithiasis
,
41
(
2
), pp.
183
186
.10.1007/s00240-012-0541-8
18.
Chotikawanich
,
E.
,
Korman
,
E.
, and
Monga
,
M.
,
2011
, “
Complications of Stone Baskets: 14-Year Review of the Manufacturer and User Facility Device Experience Database
,”
J. Urol.
,
185
(
1
), pp.
179
183
.10.1016/j.juro.2010.08.091
19.
de la Rosette
,
J. J. M. C. H.
,
Skrekas
,
T.
, and
Segura
,
J. W.
,
2006
, “
Handling and Prevention of Complications in Stone Basketing
,”
Eur. Urol.
,
50
(
5
), pp.
991
999
.10.1016/j.eururo.2006.02.033
20.
Tuttle
,
N.
, and
Jacuinde
,
G.
,
2011
, “
Design and Construction of a Novel Low-Cost Device to Provide Feedback on Manually Applied Forces
,”
J. Orthop. Sports Phys. Ther.
,
41
(
3
), pp.
174
A11
.10.2519/jospt.2011.3461
21.
Neuman
,
M.
,
Baura
,
G. D.
,
Meldrum
,
S.
,
Soykan
,
O.
,
Valentinuzzi
,
M. E.
,
Leder
,
R. S.
,
Micera
,
S.
, and
Zhang
,
Y. T.
,
2012
, “
Advances in Medical Devices and Medical Electronics
,”
Proceedings of the IEEE
,
100
(Special Centennial Issue), pp.
1537
1550
.10.1109/JPROC.2012.2190684
22.
Najafi
,
Z.
,
Tieu
,
T.
,
Mahajan
,
A. M.
, and
Schwartz
,
B. F.
,
2015
, “
Significance of Extraction Forces in Kidney Stone Basketing
,”
J. Endourol.
,
29
(
11
), pp.
1270
1275
.10.1089/end.2015.0371
23.
Luo
,
B.
,
Deng
,
Y.
,
Yang
,
T.
,
Dai
,
S.
, and
Song
,
G.
,
2019
, “
Design of a Miniature Fiber Optic Sensor to Measure Axial Force at the Tip of a Robotic Flexible Ureteroscope
,”
2019 Chinese Automation Congress
(
CAC
), Hangzhou, China, Nov. 22–24, pp.
2554
2559
.10.1109/CAC48633.2019.8996395
24.
Muscolo
,
G. G.
, and
Fiorini
,
P.
,
2023
, “
Force–Torque Sensors for Minimally Invasive Surgery Robotic Tools: An Overview
,”
IEEE Trans. Med. Robot. Bionics
,
5
(
3
), pp.
458
471
.10.1109/TMRB.2023.3261102
25.
Deng
,
Y.
,
Yang
,
T.
,
Dai
,
S.
, and
Song
,
G.
,
2021
, “
A Miniature Triaxial Fiber Optic Force Sensor for Flexible Ureteroscopy
,”
IEEE Trans. Biomed. Eng.
,
68
(
8
), pp.
2339
2347
.10.1109/TBME.2020.3034336
26.
Lai
,
W.
,
Cao
,
L.
,
Liu
,
J.
,
Tjin
,
S. C.
, and
Phee
,
S. J.
,
2022
, “
A Three-Axial Force Sensor Based on Fiber Bragg Gratings for Surgical Robots
,”
IEEE/ASME Trans. Mechatron.
,
27
(
2
), pp.
777
789
.10.1109/TMECH.2021.3071437
27.
Gao
,
B. M.
,
Tsai
,
J. C.
,
Cumpanas
,
A. D.
,
Altamirano-Villarroel
,
J.
,
Saadat
,
S.
,
Pham
,
V.
,
Grohs
,
E.
, et al.,
2024
, “
Development and Initial Evaluation of a Cost-Effective Force Sensor for Ureteroscopic Application
,”
J. Endourol.
,
38
(
10
), pp.
1075
1081
.10.1089/end.2024.0315
28.
Kaler
,
K. S.
,
Lama
,
D. J.
,
Safiullah
,
S.
,
Cooper
,
V.
,
Valley
,
Z. A.
,
O'Leary
,
M. L.
,
Patel
,
R. M.
, et al.,
2019
, “
Ureteral Access Sheath Deployment: How Much Force Is Too Much? Initial Studies With a Novel Ureteral Access Sheath Force Sensor in the Porcine Ureter
,”
J. Endourol.
,
33
(
9
), pp.
712
718
.10.1089/end.2019.0211
29.
Ahmed
,
M.
,
Pedro
,
R. N.
,
Kieley
,
S.
,
Akornor
,
J. W.
,
Durfee
,
W. K.
, and
Monga
,
M.
,
2009
, “
Systematic Evaluation of Ureteral Occlusion Devices: Insertion, Deployment, Stone Migration, and Extraction
,”
Urology
,
73
(
5
), pp.
976
980
.10.1016/j.urology.2008.12.048
30.
Najafi
,
Z.
,
Tieu
,
T.
,
Mahajan
,
A. M.
, and
Schwartz
,
B. F.
,
2016
, “
Design of a New Stone Extraction Device With Force Feedback
,”
Int. J. Biomed. Eng. Technol.
,
20
(
2
), pp.
166
178
.10.1504/IJBET.2016.074201
31.
Najafi
,
Z.
,
Tieu
,
T.
,
Mahajan
,
A.
, and
Schwartz
,
B.
,
2015
, “
Pd42-10 A Smart Kidney Stone Basket With Force Feedback
,”
J. Urol.
,
193
, pp.
e889
e890
.10.1016/j.juro.2015.02.2595
32.
Tapiero
,
S.
,
Kaler
,
K. S.
,
Jiang
,
P.
,
Lu
,
S.
,
Cottone
,
C.
,
Patel
,
R. M.
,
Okhunov
,
Z.
,
Klopfer
,
M. J.
,
Landman
,
J.
, and
Clayman
,
R. V.
,
2021
, “
Determining the Safety Threshold for the Passage of a Ureteral Access Sheath in Clinical Practice Using a Purpose-Built Force Sensor
,”
J. Urol.
,
206
(
2
), pp.
364
372
.10.1097/JU.0000000000001719
33.
McCormac
,
A.
,
Vu
,
M.-C.
,
Afyouni
,
A. S.
,
Tano
,
Z. E.
,
Ali
,
S. N.
,
Jiang
,
P.
,
Patel
,
R. M.
,
Klopfer
,
M.
,
Landman
,
J.
, and
Clayman
,
R. V.
,
2023
, “
Mp35-02 Clinical Measurement of Maximum Safe Ureteral Distensibility Using A Novel Force Sensor
,”
J. Urol.
,
209
(
Suppl 4
), p.
e468
.10.1097/JU.0000000000003269.02
You do not currently have access to this content.