Abstract

Pathological wrist and finger tremors can be mitigated by out-of-phase stimulation of the sensory nerves in the flexor and extensor muscles. This study endeavors to develop a portable, multichannel electrical stimulator designed to deliver high-frequency, low-intensity, biphasic charge-balanced current pulses within a practical load range to effectively suppress wrist and finger tremors. The circuit architecture integrates an Arduino Nanomicrocontroller, a four-channel digital potentiometer, and four Howland current pumps. The Howland current pump, employing an operational amplifier, generates bipolar currents by accepting bipolar voltages, whereas the digital potentiometer offers programmable bipolar voltages via its wiper terminals. Experimental results indicate that the pulse frequency can be adjusted between 50 Hz and 200 Hz, and the current level can be modulated within a range of −10 mA to +10 mA, with load resistance spanning 100 Ω to 1.3 kΩ. This portable and multichannel device is effective in delivering high-frequency, low-intensity sensory nerve stimulation through programmable biphasic charge-balanced current pulses. The proposed stimulator has the potential to enable adaptive muscle activation, thereby initiating, promoting, and generating movements, and facilitating interactive in-home neurorehabilitation for disabled patients. The portability and programmability of this device make it a promising tool for personalized tremor management and rehabilitation, enhancing the quality of life for individuals with motor impairments.

References

1.
Dosen
,
S.
,
Muceli
,
S.
,
Dideriksen
,
J.
,
Romero
,
M.
,
Juan
,
P.
,
Rocon
,
E.
,
Pons
,
J.
, and
Farina
,
D.
,
2015
, “
Online Tremor Suppression Using Electromyography and Low-Level Electrical Stimulation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
23
(
3
), pp.
385
395
.10.1109/TNSRE.2014.2328296
2.
Vescio
,
B.
,
Quattrone
,
A.
,
Nisticò
,
R.
,
Crasà
,
M.
, and
Quattrone
,
A.
,
2021
, “
Wearable Devices for Assessment of Tremor
,”
Front. Neurol.
,
12
, p.
680011
.10.3389/fneur.2021.680011
3.
Castrillo-Fraile
,
V.
,
Peña
,
E. C.
,
Gabriel Y Galán
,
J.
,
Delgado-López
,
P.
,
Collazo
,
C.
, and
Cubo
,
E.
,
2019
, “
Tremor Control Devices for Essential Tremor: A Systematic Literature Review
,”
Tremor Other Hyperkinet Mov.
,
9
.10.7916/tohm.v0.688
4.
Friedrichs-Maeder
,
C.
,
Proix
,
T.
,
Tcheng
,
T.
,
Skarpaas
,
T.
,
Rao
,
V.
, and
Baud
,
M.
,
2024
, “
Seizure Cycles Under Pharmacotherapy
,”
Ann. Neurol.
,
95
(
4
), pp.
743
753
.10.1002/ana.26878
5.
Grimaldi
,
G.
, and
Manto
,
M.
,
2013
, “
Pharmacological Treatments of Tremor
,”
Mechanisms and Emerging Therapies in Tremor Disorders
,
G.
Grimaldi
and
M.
Manto
, eds.,
Springer
,
New York
, pp.
419
429
.
6.
Elble
,
R. J.
,
2003
, “
Characteristics of Physiologic Tremor in Young and Elderly Adults
,”
Clin. Neurophysiol.
,
114
(
4
), pp.
624
635
.10.1016/S1388-2457(03)00006-3
7.
Lyons
,
K. E.
, and
Pahwa
,
R.
,
2008
, “
Deep Brain Stimulation and Tremor
,”
Neurotherapeutics
,
5
(
2
), pp.
331
338
.10.1016/j.nurt.2008.01.004
8.
Kalia
,
S. K.
,
Sankar
,
T.
, and
Lozano
,
A. M.
,
2013
, “
Deep Brain Stimulation for Parkinson's Disease and Other Movement Disorders
,”
Curr. Opin. Neurol
,
26
(
4
), pp.
374
380
.10.1097/WCO.0b013e3283632d08
9.
Foltynie
,
T.
,
Bruno
,
V.
,
Fox
,
S.
,
Kühn
,
A. A.
,
Lindop
,
F.
, and
Lees
,
A. J.
,
2024
, “
Medical, Surgical, and Physical Treatments for Parkinson's Disease
,”
Lancet
,
403
(
10423
), pp.
305
324
.10.1016/S0140-6736(23)01429-0
10.
Shin
,
J.
,
Matsumoto
,
M.
,
Maniruzzaman
,
M.
,
Hasan
,
M. A.
,
Hirooka
,
K.
,
Hagihara
,
Y.
,
Kotsuki
,
N.
,
Inomata-Terada
,
S.
,
Terao
,
Y.
, and
Kobayashi
,
S.
,
2024
, “
Classification of Hand-Movement Disabilities in Parkinson's Disease Using a Motion-Capture Device and Machine Learning
,”
IEEE Access
,
12
, pp.
52466
52479
.10.1109/ACCESS.2024.3386367
11.
Vergani
,
F.
,
Landi
,
A.
,
Pirillo
,
D.
,
Cilia
,
R.
,
Antonini
,
A.
, and
Sganzerla
,
E. P.
,
2010
, “
Surgical, Medical, and Hardware Adverse Events in a Series of 141 Patients Undergoing Subthalamic Deep Brain Stimulation for Parkinson Disease
,”
World Neurosurg.
,
73
(
4
), pp.
338
344
.10.1016/j.wneu.2010.01.017
12.
Tang
,
H.
,
Liao
,
X.
,
Yao
,
J.
,
Xing
,
Y.
,
Zhao
,
X.
,
Cheng
,
W.
,
Gu
,
T.
, et al.,
2024
, “
Analysis of Gait Characteristics and Related Factors in Patients With Parkinson's Disease Based on Wearable Devices
,”
Brain Behav.
,
14
(
4
), p.
e3440
.10.1002/brb3.3440
13.
Morales-Briceño
,
H.
,
Ha
,
A. D.
,
Chiang
,
H. L.
,
Tai
,
Y.
,
Chang
,
F. C. F.
,
Tsui
,
D. S.
,
Griffith
,
J.
, et al.,
2023
, “
A Single Centre Prospective Study of Three Device-Assisted Therapies for Parkinson's Disease
,”
NPJ Parkinsons Dis.
,
9
(
1
), p.
101
.10.1038/s41531-023-00525-w
14.
Habibollahi
,
Z.
,
Zhou
,
Y.
,
Jenkins
,
M. E.
,
Garland
,
S. J.
,
Naish
,
M. D.
, and
Trejos
,
A. L.
,
2023
, “
Multimodal Tremor Suppression of the Wrist Using FES and Electric Motors-A Simulation Study
,”
IEEE Rob. Autom. Lett.
,
8
(
11
), pp.
7543
7550
.10.1109/LRA.2023.3316607
15.
Doucet
,
B. M.
,
Lam
,
A.
, and
Griffin
,
L.
,
2012
, “
Neuromuscular Electrical Stimulation for Skeletal Muscle Function
,”
Yale J. Biol. Med.
,
85
(
2
), pp.
201
215
.https://api.semanticscholar.org/CorpusID:211354
16.
Dosen
,
S.
,
Dideriksen
,
J. L.
,
Rocon
,
E.
,
Pons
,
J. L.
, and
Farina
,
D.
,
2013
, “
Tremor Suppression Using Electromyography and Surface Sensory Electrical Stimulation
,”
Biosystems and Biorobotics
, Vol.
1
,
Springer International Publishing
, Berlin, Heidelberg, pp.
539
543
.10.1007/978-3-642-34546-3_87
17.
Vescio
,
B.
,
De Maria
,
M.
,
Crasà
,
M.
,
Nisticò
,
R.
,
Calomino
,
C.
,
Aracri
,
F.
,
Quattrone
,
A.
, and
Quattrone
,
A.
,
2023
, “
Development of a New Wearable Device for the Characterization of Hand Tremor
,”
Bioengineering
,
10
(
9
), p.
1025
.10.3390/bioengineering10091025
18.
Yue
,
Z.
,
Mary
,
E. J.
,
Michael
,
D. N.
, and
Ana Luisa
,
T.
,
2018
, “
Development of a Wearable Tremor Suppression Glove
,”
2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)
, Enschede, The Netherlands, Aug. 26–29, pp.
640
645
.10.1109/BIOROB.2018.8487197
19.
Ruckart
,
K. W.
,
Wilson
,
C.
,
Moya-Mendez
,
M. E.
,
Madden
,
L. L.
,
Laxton
,
A.
, and
Siddiqui
,
M. S.
,
2023
, “
Effect of Ventral Intermediate Nucleus Deep Brain Stimulation on Vocal Tremor in Essential Tremor
,”
Tremor Other Hyperkinet Mov.
,
13
(
1
), p.
13
.10.5334/tohm.757
20.
Okoroafor
,
F.
,
Beattie
,
H.
,
Qiang
,
Z.
, and
Yianni
,
J.
,
2024
, “
Fragile X-Associated Tremor/Ataxia Syndrome Treated With Multitarget Deep Brain Stimulation
,”
BMJ Case Rep.
,
17
(
5
), p.
e259452
.10.1136/bcr-2023-259452
21.
BSI Standards,
2019
, “Multi-Part Document BS EN 60601 - Medical Electrical Equipment,” The British Standards Institution, London, UK.
22.
Yuan
,
Y.
,
Xun
,
G.
,
Ma
,
F.
,
Suo
,
Q.
,
Xue
,
H.
,
Jia
,
K.
, and
Zhang
,
A.
,
2018
, “
A Novel Channel-Aware Attention Framework for Multi-Channel EEG Seizure Detection Via Multi-View Deep Learning
,”
2018 IEEE EMBS International Conference on Biomedical and Health Informatics, BHI 2018
, Las Vegas, NV, Mar. 4–7, Vol.
2018, pp. 206–209
.10.1109/BHI.2018.8333405
23.
Khan
,
Y.
,
Han
,
D.
,
Ting
,
J.
,
Ahmed
,
M. N.
,
Nagisetty
,
R.
, and
Arias
,
A. C.
,
2019
, “
Organic Multi-Channel Optoelectronic Sensors for Wearable Health Monitoring
,”
IEEE Access
,
7
, pp.
128114
128124
.10.1109/ACCESS.2019.2939798
24.
Lin
,
Y.
,
Lee
,
S.
,
Chen
,
Y.
,
Huang
,
C.
, and
Chiueh
,
H.
,
2016
, “
Live Demonstration: A Wireless Multi-Channel Physiological Signal Acquisition System-on-Chip for Wearable Devices
,”
2016 IEEE SENSORS, 1-1, 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS)
,
Shanghai, China
, Oct. 17–19, p.
128
.10.1109/BioCAS.2016.7833742
25.
Kwon
,
J.
,
Ha
,
J.
,
Kim
,
D.-H.
,
Choi
,
J. W.
, and
Kim
,
L.
,
2021
, “
Emotion Recognition Using a Glasses-Type Wearable Device Via Multi-Channel Facial Responses
,”
IEEE Access
,
9
, pp.
146392
146403
.10.1109/ACCESS.2021.3121543
26.
Micera
,
S.
,
Keller
,
T.
,
Lawrence
,
M.
,
Morari
,
M.
, and
Popovic
,
D.
,
2010
, “
Wearable Neural Prostheses
,”
IEEE Eng. Med. Biol. Mag.
,
29
(
3
), pp.
64
69
.10.1109/MEMB.2010.936547
27.
Analog Devices
,
2011
, “
Circuit Note CN-0151 Versatile High Precision Programmable Current Sources Using DACs, Op Amps, and MOSFET Transistors
,” ANALOG DEVICES, Norwood, MA.
28.
Analog Devices
,
2006
, “
LC2MOS 5 Ω RON SPST Switches - ADG451/ADG452/ADG453
,” ANALOG DEVICES, Norwood, MA.
29.
Analog Devices
,
2017
, “
Quad Channel, 128-/256-Position, I2 C/SPI, Nonvolatile Digital Potentiometer - AD5124/AD5144/AD5144A
,” ANALOG DEVICES, Norwood, MA.
30.
Texas Instruments Incorporated Product
,
2015
, “
LP38690/LP38692 1A Low Dropout CMOS Linear Regulators 1A Low Dropout CMOS Linear Regulators
,” Texas Instruments Incorporated Product, Dallas, TX.
31.
Maxim Integrated Products
,
2004
, “
MAX6138 Data Sheet
,” Maxim Integrated Products, Sunnyvale, CA.
32.
Analog Devices
,
2018
, “
Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifiers - AD8510/AD8512/AD8513
,” ANALOG DEVICES, Norwood, MA.
33.
Maxim Integrated Products
,
1990
, “
MAX743 Data Sheet
,” Maxim Integrated Products, Sunnyvale, CA.
34.
Texas Instruments Incorporated
,
2018
, “
LM3880 Three-Rail Simple Power Sequencer
,” Texas Instruments Incorporated, Dallas, TX.
35.
Jimblom
, 2024, “
Bi-Directional Logic Level Converter Hookup Guide
,” SparkFun Electronics, Niwot, CO, accessed Apr. 6, 2024, https://learn.sparkfun.com/tutorials/bi-directional-logic-level-converter-hookup-guide?_ga=2.228830556.1303451142.1568130216-938162177.1560541857
You do not currently have access to this content.