Self-folding origami has the potential to be utilized in novel areas such as self-assembling robots and shape-morphing structures. Important decisions in the development of such applications include the choice of active material and its placement on the origami model. With proper active material placement, the error between the actual and target shapes can be minimized along with cost, weight, and input energy requirements. A method for creating magnetically actuated dynamic models and experimentally verifying their results is briefly reviewed, after which the joint stiffness and magnetic material approximations used in the dynamic model are discussed in more detail. Through the incorporation of dynamic models of magnetically actuated origami mechanisms into the Applied Research Laboratory's trade space visualizer (atsv), the trade spaces of self-folding dynamic models of the waterbomb base and Shafer's frog tongue are explored. Finally, a design tradeoff is investigated between target shape approximation error and the placement of magnetic material needed to reach a target shape. These two examples demonstrate the potential use of this process as a design tool for other self-folding origami mechanisms.

References

1.
Edmondson
,
B. J.
,
Bowen
,
L. A.
,
Grames
,
C. L.
,
Magleby
,
S. P.
,
Howell
,
L. L.
, and
Bateman
,
T. C.
,
2013
, “
Oriceps: Origami-Inspited Forceps
,”
ASME
Paper No. SMASIS2013-3299.
2.
Felton
,
S.
,
Tolley
,
M.
,
Demaine
,
E.
,
Rus
,
D.
, and
Wood
,
R.
,
2014
, “
A Method for Building Self-Folding Machines
,”
Science
,
345
(
6197
), pp.
644
646
.
3.
Zirbel
,
S. A.
,
Lang
,
R. J.
,
Magleby
,
S. P.
,
Thompson
,
M. W.
,
Sigel
,
D. A.
,
Walkemeyer
,
P. E.
,
Trease
,
B. P.
, and
Howell
,
L. L.
,
2013
, “
Accommodating Thickness in Origami-Based Deployable Arrays
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111005
.
4.
Koh
,
J.-S.
,
Kim
,
S.
, and
Cho
,
K.-J.
,
2014
, “
Self-Folding Origami Using Torsion Shape Memory Alloy Wire Actuators
,”
ASME
Paper No. DETC2014-34822.
5.
Peraza-Hernandez
,
E.
,
Hartl
,
D.
,
Galvan
,
E.
, and
Malak
,
R.
,
2013
, “
Design and Optimization of a Shape Memory Alloy-Based Self-Folding Sheet
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111007
.
6.
Liu
,
Y.
,
Boyles
,
J. K.
,
Genzer
,
J.
, and
Dickey
,
M. D.
,
2012
, “
Self-Folding of Polymer Sheets Using Local Light Absorption
,”
Soft Matter
,
8
(
6
), pp.
1764
1769
.
7.
Ryu
,
J.
,
D'Amato
,
M.
,
Cui
,
X.
,
Long
,
K. N.
,
Qi
,
H.
,
Dunn
,
M. L.
,
D'Amato
,
M.
,
Cui
,
X.
,
Long
,
K. N.
,
Jerry Qi
,
H.
, and
Dunn
,
M. L.
,
2012
, “
Photo-Origami—Bending and Folding Polymers With Light
,”
Appl. Phys. Lett.
,
100
(
16
), p.
161908
.
8.
von Lockette
,
P.
, and
Sheridan
,
R.
,
2013
, “
Folding Actuation and Locomotion of Novel Magneto-Active Elastomer (MAE) Composites
,”
ASME
Paper No. SMASIS2013-3222.
9.
Bowen
,
L.
,
Springsteen
,
K.
,
Feldstein
,
H.
,
Frecker
,
M.
,
Simpson
,
T. W.
, and
von Lockette
,
P.
,
2015
, “
Development and Validation of a Dynamic Model of Magneto-Active Elastomer Actuation of the Origami Waterbomb Base
,”
ASME J. Mech. Rob.
,
7
(
1
), p.
011010
.
10.
Crivaro
,
A.
,
Sheridan
,
R.
,
Frecker
,
M.
,
Simpson
,
T. W.
, and
Von Lockette
,
P.
,
2014
, “
Bistable Compliant Mechanism Using Magneto Active Elastomer Actuation
,”
ASME
Paper No. DETC2014-35007.
11.
Sheridan
,
R.
,
Roche
,
J.
,
Lofland
,
S.
, and
von Lockette
,
P.
,
2014
, “
Numerical Simulation and Experimental Validation of the Large Deformation Bending and Folding Behavior of Magneto-Active Elastomer Composites
,”
Smart Mater. Struct.
,
23
(
9
), p.
094004
.
12.
Ahmed
,
S.
,
Ounaies
,
Z.
, and
Frecker
,
M.
,
2014
, “
Investigating the Performance and Properties of Dielectric Elastomer Actuators as a Potential Means to Actuate Origami Structures
,”
Smart Mater. Struct.
,
23
(
9
), p.
094003
.
13.
McGough
,
K.
,
Ahmed
,
S.
,
Frecker
,
M.
, and
Ounaies
,
Z.
,
2014
, “
Finite Element Analysis and Validation of Dielectric Elastomer Actuators Used for Active Origami
,”
Smart Mater. Struct.
,
23
(
9
), p.
094002
.
14.
Ahmed
,
S.
,
Arrojado
,
E.
,
Sigamani
,
N.
, and
Ounaies
,
Z.
,
2015
, “
Electric Field Responsive Origami Structures Using Electrostriction-Based Active Materials
,”
Proc. SPIE
,
9432
, p.
943206
.
15.
2010
, “
The Applied Research Laboratory Trade Space Visualizer
,” Last accessed Jan. 1, 2015, http://www.atsv.psu.edu
16.
MSC Software,
2013
, “
Adams: The Multibody Dynamics Simulation Solution
,” MSC Software Corp., Newport Beach, CA, http://www.mscsoftware.com/product/adams
17.
Shafer
,
J.
,
2010
,
Origami Ooh La La!: Action Origami for Performance and Play
,
CreateSpace Independent Publishing
Platform, US
.
18.
Sheridan
,
R.
,
Tedesco
,
C.
,
Von Lockette
,
P.
,
Frecker
,
M.
,
von Lockette
,
P.
, and
Frecker
,
M.
,
2014
, “
Modeling Magneto-Active Elastomer Composites Using the Finite Element Method
,”
ASME
Paper No. SMASIS2014-7705.
19.
2015
, “
COMSOL
,” http://www.comsol.com/
20.
Malak
,
R.
,
Saunders
,
R.
,
Hartl
,
D.
,
Malak
,
R.
, and
Lagoudas
,
D.
,
2014
, “
Design and Analysis of a Self-Folding SMA–SMP Composite Laminate
,”
ASME
Paper No. DETC2014-35151.
23.
Fuchi
,
K.
,
Ware
,
T. H.
,
Buskohl
,
P. R.
,
Reich
,
G. W.
,
Vaia
,
R. A.
,
White
,
T. J.
, and
Joo
,
J. J.
,
2015
, “
Topology Optimization for the Design of Folding Liquid Crystal Elastomer Actuators
,”
Soft Matter
,
11
(
37
), pp.
7288
7295
.
24.
Lang
,
R.
,
1996
, “
A Computational Algorithm for Origami Design
,”
Twelfth Annual Symposium on Computational Geometry
, pp.
98
105
.
25.
Xi
,
Z.
, and
Lien
,
J.
,
2014
, “
Folding Rigid Origami With Closure Constraints
,”
ASME
Paper No. DETC2014-35556.
26.
Fuchi
,
K.
, and
Diaz
,
A. R.
,
2013
, “
Origami Design by Topology Optimization
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111003
.
27.
Li
,
W.
, and
McAdams
,
D. A.
,
2015
, “
Designing Optimal Origami Structures by Computational Evolutionary Embryogeny
,”
ASME J. Comput. Inf. Sci. Eng.
,
15
(
1
), p.
011010
.
28.
Balling
,
R.
,
1999
, “
Design by Shopping: A New Paradigm?
,”
Third World Congress of Structural and Multidisciplinary Optimization (WCSMO-3)
, pp.
295
297
.
29.
Miller
,
S. W.
,
Simpson
,
T. W.
,
Yukish
,
M. A.
,
Bennett
,
L. A.
,
Lego
,
S. E.
, and
Stump
,
G. M.
,
2013
, “
Preference Construction, Sequential Decision Making, and Trade Space Exploration
,”
ASME
Paper No. DETC2013-13098.
30.
Simpson
,
T. W.
,
Carlsen
,
D.
,
Malone
,
M.
, and
Kollat
,
J.
,
2011
, “
Trade Space Exploration: Assessing the Benefits of Putting Designers ‘Back-in-the-Loop’ During Engineering Optimization
,”
Human-in-the-Loop Simulation: Methods and Practice
,
L.
Rothrock
, and
S.
Narayanan
, eds.,
Springer
,
New York
, pp.
131
152
.
31.
Stump
,
G.
,
Lego
,
S.
,
Yukish
,
M.
,
Simpson
,
T. W.
, and
Donndelinger
,
J. A.
,
2009
, “
Visual Steering Commands for Trade Space Exploration: User-Guided Sampling With Example
,”
ASME J. Comput. Inf. Sci. Eng.
,
9
(
4
), p.
044501
.
32.
Simpson
,
T.
, and
Meckesheimer
,
M.
,
2004
, “
Evaluation of a Graphical Design Interface for Design Space Visualization
,” 45th
AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics and Materials Conference
,
Palm Springs, CA
, pp.
1898
1908
.
33.
Stump
,
G. M.
,
Yukish
,
M. A.
,
Martin
,
J. D.
, and
Simpson
,
T. W.
,
2004
, “
The ARL Trade Space Visualizer: An Engineering Decision-Making Tool
,”
Collection of Technical Papers—10th
AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference, Vol.
5
, pp.
2976
2986
.
34.
Stump
,
G. M.
,
Simpson
,
T. W.
,
Yukish
,
M.
, and
O'Hara
,
J. J.
,
2004
, “
Trade Space Exploration of Satellite Datasets Using a Design by Shopping Paradigm
,”
IEEE
Aerospace Conference Proceedings
, Mar. 6–13, Vol.
6
, pp.
3885
3894
.
35.
Belcastro
,
S.
, and
Hull
,
T.
,
2002
, “
Modelling the Folding of Paper Into Three Dimensions Using Affine Transformations
,”
Linear Algebra Appl.
,
348
(
1–3
), pp.
273
282
.
36.
Dai
,
J.
, and
Cannella
,
F.
,
2007
, “
Stiffness Characteristics of Carton Folds for Packaging
,”
ASME J. Mech. Des.
,
130
(
2
), p.
022305
.
37.
Hanna
,
B.
,
Lund
,
J.
,
Lang
,
R.
,
Magleby
,
S.
, and
Howell
,
L.
,
2014
, “
Waterbomb Base: A Symmetric Single-Vertex Bistable Origami Mechanism
,”
Smart Mater. Struct.
,
23
(
9
), p.
094009
.
38.
Shafer
,
J.
,
2001
,
Origami to Astonish and Amuse
,
St. Martin's Press
,
New York
.
39.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley-Interscience
,
Hoboken, NJ
.
You do not currently have access to this content.