Modeling folding surfaces with nonzero thickness is of practical interest for mechanical engineering. There are many existing approaches that account for material thickness in folding applications. We propose a new systematic and broadly applicable algorithm to transform certain flat-foldable crease patterns into new crease patterns with similar folded structure but with a facet-separated folded state. We provide conditions on input crease patterns for the algorithm to produce a thickened crease pattern avoiding local self-intersection, and provide bounds for the maximum thickness that the algorithm can produce for a given input. We demonstrate these results in parameterized numerical simulations and physical models.

References

1.
Tachi
,
T.
,
2011
, “
Rigid-Foldable Thick Origami
,”
Origami 5
,
A.K. Peters
,
Natick, MA
, pp.
253
264
.
2.
Schenk
,
M.
,
Kerr
,
S.
,
Smyth
,
A.
, and
Guest
,
S.
,
2013
, “
Inflatable Cylinders for Deployable Space Structures
,”
1st International Conference Transformables
.
3.
Balkcom
,
D.
,
2002
, “
Robotic Origami Folding
,” Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA.
4.
Arora
,
W. J.
,
In
,
H. J.
,
Buchner
,
T.
,
Yang
,
S.
,
Smith
,
H. I.
, and
Barbastathis
,
G.
,
2006
, “
Nanostructured Origami 3d Fabrication and Self Assembly Process for Soldier Combat Systems
,”
Sel. Top. Electron. Syst.
,
42
, pp.
473
477
.
5.
Huffman
,
D.
,
1976
, “
Curvature and Creases: A Primer on Paper
,”
IEEE Trans. Comput.
,
25
(
10
), pp.
1010
1019
.
6.
Miura
,
K.
,
1989
, “
A Note on Intrinsic Geometry of Origami
,”
First International Meeting of Origami Science and Technology
, Ferrara, Italy, Dec. 6–7.
7.
Tachi
,
T.
,
2009
, “
Simulation of Rigid Origami
,”
Origami 4
,
A.K. Peters
,
Natick, MA
, pp.
175
187
.
8.
Hoberman
,
C.
,
2010
, “
Folding Structures Made of Thick Hinged Sheets
,” U.S. Patent No. 7,794,019.
9.
Chen
,
Y.
,
Peng
,
R.
, and
You
,
Z.
,
2015
, “
Origami of Thick Panels
,”
Science
,
349
(
6246
), pp.
396
400
.
10.
Edmondson
,
B. J.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2014
, “
An Offset Panel Technique for Rigidly Foldable Origami
,”
ASME
Paper No. DETC2014-35606.
11.
Zirbel
,
S. A.
,
Lang
,
R. J.
,
Thomson
,
M. W.
,
Sigel
,
D. A.
,
Walkemeyer
,
P. E.
,
Trease
,
B. P.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2013
, “
Accommodating Thickness in Origami-Based Deployable Arrays
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111005
.
12.
Hoberman
,
C.
,
1991
, “
Reversibly Expandable Structures
,” U.S. Patent No. 4,981,732.
13.
Trautz
,
M.
, and
Kunstler
,
A.
,
2010
, “
Deployable Folded Plate Structures-Folding Patterns Based on 4-Fold-Mechanism Using Stiff Plates
,”
Symposium of the International Association for Shell and Spatial Structures
(
IASS
), Valencia, Spain, Sept. 28–Oct. 2, 2009, pp.
2306
2317
.
14.
Lang
,
R. J.
, and
Demaine
,
E. D.
,
2006
, “
Facet Ordering and Crease Assignment in Uniaxial Bases
,”
Origami 4: Proceedings of the 4th International Meeting of Origami Science, Math, and Education (OSME 2006)
,
Pasadena, CA
, Sept. 8–10,
A. K. Peters, Ltd.
,
Natick, MA
pp.
189
205
.
15.
Umesato
,
T.
,
Saitoh
,
T.
,
Uehara
,
R.
, and
Ito
,
H.
,
2011
, “
Complexity of the Stamp Folding Problem
,”
Combinatorial Optimization and Applications
,
Springer
,
Berlin
, pp.
311
321
.
16.
Demaine
,
E. D.
,
Eppstein
,
D.
,
Hesterberg
,
A.
,
Ito
,
H.
,
Lubiw
,
A.
,
Uehara
,
R.
, and
Uno
,
Y.
,
2015
, “
Folding a Paper Strip to Minimize Thickness
,” WALCOM: Algorithms and Computation: 9th International Workshop, WALCOM 2015 (Lecture Notes in Computer Science), Vol.
8973
,
Springer, Cham
,
Switzerland
, pp.
113
124
.
17.
Tachi
,
T.
,
2014
, “
Freeform Origami. Software
,” http://www.tsg.ne.jp/TT/software/
You do not currently have access to this content.