The accuracy of a parallel kinematic mechanism (PKM) is directly related to its dynamic stiffness, which in turn is configuration dependent. For PKMs with kinematic redundancy, configurations with higher stiffness can be chosen during motion-trajectory planning for optimal performance. Herein, dynamic stiffness refers to the deformation of the mechanism structure, subject to dynamic loads of changing frequency. The stiffness-optimization problem has two computational constraints: (i) calculation of the dynamic stiffness of any considered PKM configuration, at a given task-space location, and (ii) searching for the PKM configuration with the highest stiffness at this location. Due to the lack of available analytical models, herein, the former subproblem is addressed via a novel effective emulator to provide a computationally efficient approximation of the high-dimensional dynamic-stiffness function suitable for optimization. The proposed method for emulator development identifies the mechanism's structural modes in order to breakdown the high-dimensional stiffness function into multiple functions of lower dimension. Despite their computational efficiency, however, emulators approximating high-dimensional functions are often difficult to develop and implement due to the large amount of data required to train the emulator. Reducing the dimensionality of the approximation function would, thus, result in a smaller training data set. In turn, the smaller training data set can be obtained accurately via finite-element analysis (FEA). Moving least-squares (MLS) approximation is proposed herein to compute the low-dimensional functions for stiffness approximation. Via extensive simulations, some of which are described herein, it is demonstrated that the proposed emulator can predict the dynamic stiffness of a PKM at any given configuration with high accuracy and low computational expense, making it quite suitable for most high-precision applications. For example, our results show that the proposed methodology can choose configurations along given trajectories within a few percentage points of the optimal ones.

References

1.
Weck
,
M.
, and
Staimer
,
D.
,
2002
, “
Parallel Kinematic Machine Tools—Current State and Future Potentials
,”
CIRP Ann. Manuf. Technol.
,
51
(
2
), pp.
671
683
.
2.
Merlet
,
J. P.
, and
Gosselin
,
C.
,
2008
, “
Parallel Mechanisms and Robots
,”
Springer Handbook of Robotics
,
Springer
,
Berlin, Heidelberg
, pp.
269
285
.
3.
Pedrammehr
,
S.
,
Mahboubkhah
,
M.
, and
Khani
,
N.
,
2013
, “
A Study on Vibration of Stewart Platform-Based Machine Tool Table
,”
Int. J. Adv. Manuf. Technol.
,
65
(
5–8
), pp.
991
1007
.
4.
Hesselbach
,
J.
,
Wrege
,
J.
,
Raatz
,
A.
, and
Becker
,
O.
,
2004
, “
Aspects on Design of High Precision Parallel Robots
,”
Assem. Autom.
,
24
(
1
), pp.
49
57
.
5.
Wiens
,
G. J.
, and
Hardage
,
D. S.
,
2006
, “
Structural Dynamics and System Identification of Parallel Kinematic Machines
,”
ASME
Paper No. DETC2006-99671.
6.
Duguleana
,
M.
,
Barbuceanu
,
F. G.
,
Teirelbar
,
A.
, and
Mogan
,
G.
,
2012
, “
Obstacle Avoidance of Redundant Manipulators Using Neural Networks Based Reinforcement Learning
,”
Rob. Comput. Integr. Manuf.
,
28
(
2
), pp.
132
146
.
7.
Daachi
,
B.
,
Madani
,
T.
, and
Benallegue
,
A.
,
2012
, “
Adaptive Neural Controller for Redundant Robot Manipulators and Collision Avoidance With Mobile Obstacles
,”
Neurocomputing
,
79
, pp.
50
60
.
8.
Ebrahimi
,
I.
,
Carretero
,
J. A.
, and
Boudreau
,
R.
,
2007
, “
3-PRRR Redundant Planar Parallel Manipulator: Inverse Displacement, Workspace and Singularity Analyses
,”
Mech. Mach. Theory
,
42
(
8
), pp.
1007
1016
.
9.
Zlatanov
,
D.
,
Fenton
,
R. G.
, and
Benhabib
,
B.
,
1995
, “
A Unifying Framework for Classification and Interpretation of Mechanism Singularities
,”
ASME J. Mech. Des.
,
117
(
4
), pp.
566
572
.
10.
Zlatanov
,
D.
,
Fenton
,
R. G.
, and
Benhabib
,
B.
,
1998
, “
Identification and Classification of the Singular Configurations of Mechanisms
,”
Mech. Mach. Theory
,
33
(
6
), pp.
743
760
.
11.
Wang
,
J.
, and
Gosselin
,
C. M.
,
2004
, “
Kinematic Analysis and Design of Kinematically Redundant Parallel Mechanisms
,”
ASME J. Mech. Des.
,
126
(
1
), pp.
109
118
.
12.
Mohamed
,
M. G.
, and
Gosselin
,
C. M.
,
2005
, “
Design and Analysis of Kinematically Redundant Parallel Manipulators With Configurable Platforms
,”
IEEE Trans. Rob.
,
21
(
3
), pp.
277
287
.
13.
Kotlarski
,
J.
,
Abdellatif
,
H.
,
Ortmaier
,
T.
, and
Heimann
,
B.
,
2009
, “
Enlarging the Useable Workspace of Planar Parallel Robots Using Mechanisms of Variable Geometry
,”
ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots
(
ReMAR 2009
),
London
, June 22–24, pp.
63
72
.
14.
Saglia
,
J. A.
,
Dai
,
J. S.
, and
Caldwell
,
D. G.
,
2008
, “
Geometry and Kinematic Analysis of a Redundantly Actuated Parallel Mechanism That Eliminates Singularities and Improves Dexterity
,”
ASME J. Mech. Des.
,
130
(
12
), p.
124501
.
15.
Wu
,
J.
,
Wang
,
J.
,
Wang
,
L.
, and
Li
,
T.
,
2009
, “
Dynamics and Control of a Planar 3-DOF Parallel Manipulator With Actuation Redundancy
,”
Mech. Mach. Theory
,
44
(
4
), pp.
835
849
.
16.
Wu
,
J.
,
Wang
,
D.
, and
Wang
,
L.
,
2015
, “
A Control Strategy of a Two Degrees-of-Freedom Heavy Duty Parallel Manipulator
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
6
), p.
061007
.
17.
Wu
,
J.
,
Chen
,
X.
,
Li
,
T.
, and
Wang
,
L.
,
2013
, “
Optimal Design of a 2-DOF Parallel Manipulator With Actuation Redundancy Considering Kinematics and Natural Frequency
,”
Rob. Comput. Integr. Manuf.
,
29
(
1
), pp.
80
85
.
18.
Wu
,
J.
,
Li
,
T.
,
Wang
,
J.
, and
Wang
,
L.
,
2013
, “
Stiffness and Natural Frequency of a 3-DOF Parallel Manipulator With Consideration of Additional Leg Candidates
,”
Rob. Auton. Syst.
,
61
(
8
), pp.
868
875
.
19.
Owen
,
W. S.
,
Croft
,
E. A.
, and
Benhabib
,
B.
,
2005
, “
Acceleration and Torque Redistribution for a Dual-Manipulator System
,”
IEEE Trans. Rob.
,
21
(
6
), pp.
1226
1230
.
20.
Owen
,
W. S.
,
Croft
,
E. A.
, and
Benhabib
,
B.
,
2008
, “
Stiffness Optimization for Two-Armed Robotic Sculpting
,”
Int. J. Ind. Rob.
,
35
(
1
), pp.
46
57
.
21.
Owen
,
W. S.
,
Croft
,
E. A.
, and
Benhabib
,
B.
,
2008
, “
A Multi-Arm Robotic System for Optimal Sculpting
,”
Rob. Comput. Integr. Manuf.
,
24
(
1
), pp.
92
104
.
22.
Ding
,
B.
,
Cazzolato
,
B. S.
,
Stanley
,
R. M.
,
Grainger
,
S.
, and
Costi
,
J. J.
,
2014
, “
Stiffness Analysis and Control of a Stewart Platform-Based Manipulator With Decoupled Sensor–Actuator Locations for Ultrahigh Accuracy Positioning Under Large External Loads
,”
ASME J. Dyn. Syst. Meas. Control
,
136
(
6
), p.
061008
.
23.
Schneider
,
U.
,
Momeni
,
K. M.
,
Ansaloni
,
M.
, and
Verl
,
A.
,
2014
, “
Stiffness Modeling of Industrial Robots for Deformation Compensation in Machining
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS 2014
),
Chicago, IL
, Sept. 14–18, pp.
4464
4469
.
24.
Cheng
,
K.
,
2009
,
Machining Dynamics: Fundamentals, Applications and Practices
,
Springer
,
London
.
25.
Mao
,
K.
,
Li
,
B.
,
Wu
,
J.
, and
Shao
,
X.
,
2010
, “
Stiffness Influential Factors-Based Dynamic Modeling and Its Parameter Identification Method of Fixed Joints in Machine Tools
,”
Int. J. Mach. Tools Manuf.
,
50
(
2
), pp.
156
164
.
26.
Yue
,
Y.
,
Gao
,
F.
,
Zhao
,
X.
, and
Ge
,
Q. J.
,
2010
, “
Relationship Among Input-Force, Payload, Stiffness, and Displacement of a 6-DOF Perpendicular Parallel Micromanipulator
,”
ASME J. Mech. Rob.
,
2
(
1
), p.
011007
.
27.
Law
,
M.
,
Phani
,
A. S.
, and
Altintas
,
Y.
,
2013
, “
Position-Dependent Multibody Dynamic Modeling of Machine Tools Based on Improved Reduced Order Models
,”
ASME J. Manuf. Sci. Eng.
,
135
(
2
), p.
021008
.
28.
Mahmoodi
,
M.
,
2014
, “
Structural Dynamic Modeling, Dynamic Stiffness, and Active Vibration Control of Parallel Kinematic Mechanisms With Flexible Linkages
,” Ph.D. thesis,
University of Toronto
, Toronto, ON, Canada.
29.
Altintas
,
Y.
,
2012
,
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design
,
Cambridge University Press
,
Cambridge, UK
.
30.
Lee
,
S. W.
,
Mayor
,
R.
, and
Ni
,
J.
,
2006
, “
Dynamic Analysis of a Mesoscale Machine Tool
,”
ASME J. Manuf. Sci. Eng.
,
128
(
1
), pp.
194
203
.
31.
Yuan
,
H.
,
Courteille
,
E.
, and
Deblaise
,
D.
,
2014
, “
Elastodynamic Analysis of Cable-Driven Parallel Manipulators Considering Dynamic Stiffness of Sagging Cables
,”
IEEE International Conference on Robotics and Automation
(
ICRA
),
Hong Kong
, May 31–June 7, pp.
4055
4060
.
32.
Yuan
,
H.
,
Courteille
,
E.
, and
Deblaise
,
D.
,
2015
, “
Static and Dynamic Stiffness Analyses of Cable-Driven Parallel Robots With Non-Negligible Cable Mass and Elasticity
,”
Mech. Mach. Theory
,
85
, pp.
64
81
.
33.
Falkenhahn
,
V.
,
Mahl
,
T.
,
Hildebrandt
,
A.
,
Neumann
,
R.
, and
Sawodny
,
O.
,
2014
, “
Dynamic Modeling of Constant Curvature Continuum Robots Using the Euler–Lagrange Formalism
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS 2014
),
Chicago, IL
, Sept. 14–18, pp.
2428
2433
.
34.
Wu
,
G.
,
Caro
,
S.
,
Bai
,
S.
, and
Kepler
,
J.
,
2014
, “
Dynamic Modeling and Design Optimization of a 3-DOF Spherical Parallel Manipulator
,”
Rob. Auton. Syst.
,
62
(
10
), pp.
1377
1386
.
35.
Mi
,
L.
,
Yin
,
G.
,
Sun
,
M.
, and
Wang
,
X.
,
2012
, “
Effects of Preloads on Joints on Dynamic Stiffness of a Whole Machine Tool Structure
,”
J. Mech. Sci. Technol.
,
26
(
2
), pp.
495
508
.
36.
Pinto
,
Ch.
,
Corral
,
J.
,
Herrero
,
S.
, and
Şandru
,
B.
,
2011
, “
Vibratory Dynamic Behaviour of Parallel Manipulators in Their Workspace
,”
13th World Congress in Mechanism and Machine Science
,
Gto, Mexico.
37.
Mignolet
,
M. P.
,
Przekop
,
A.
,
Rizzi
,
S. A.
, and
Spottswood
,
S. M.
,
2013
, “
A Review of Indirect/Non-Intrusive Reduced Order Modeling of Nonlinear Geometric Structures
,”
J. Sound Vib.
,
332
(
10
), pp.
2437
2460
.
38.
Leeds
,
W. B.
,
Wikle
,
C. K.
, and
Fiechter
,
J.
,
2014
, “
Emulator-Assisted Reduced-Rank Ecological Data Assimilation for Nonlinear Multivariate Dynamical Spatio-Temporal Processes
,”
Stat. Methodol.
,
17
, pp.
126
138
.
39.
Sher
,
E.
,
Chronis
,
A.
, and
Glynn
,
R.
,
2014
, “
Adaptive Behavior of Structural Systems in Unpredictable Changing Environments by Using Self-Learning Algorithms: A Case Study
,”
Simulation
,
90
(
8
), pp.
991
1006
.
40.
Zhang
,
Z.
,
Xu
,
L.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2014
, “
A Kriging Model for Dynamics of Mechanical Systems With Revolute Joint Clearances
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
3
), p.
031013
.
41.
Fasshauer
,
G. E.
,
2007
,
Meshfree Approximation Methods With MATLAB
,
World Scientific Publishing
,
Singapore
.
42.
Gossler
,
A.
,
2001
, “
Moving Least-Squares: A Numerical Differentiation Method for Irregularly Spaced Calculation Points
,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND2001-1669.
43.
Yu
,
J. J.
,
Qin
,
X. S.
, and
Larsen
,
O.
,
2014
, “
Uncertainty Analysis of Flood Inundation Modelling Using GLUE With Surrogate Models in Stochastic Sampling
,”
Hydrol. Processes
,
29
(
6
), pp.
1267
1279
.
44.
Taflanidis
,
A. A.
, and
Cheung
,
S. H.
,
2012
, “
Stochastic Sampling Using Moving Least Squares Response Surface Approximations
,”
Probab. Eng. Mech.
,
28
, pp.
216
224
.
45.
Azulay
,
H.
,
Mahmoodi
,
M.
,
Zhao
,
R.
,
Mills
,
J. K.
, and
Benhabib
,
B.
,
2014
, “
Comparative Analysis of a New 3× PPRS Parallel Kinematic Mechanism
,”
Rob. Comput. Integr. Manuf.
,
30
(
4
), pp.
369
378
.
46.
Alagheband
,
A.
,
Mahmoodi
,
M.
,
Mills
,
J. K.
, and
Benhabib
,
B.
,
2015
, “
Comparative Analysis of a Redundant Pentapod Parallel Kinematic Machine
,”
ASME J. Mech. Rob.
,
7
(
3
), p.
034502
.
47.
Gosavi
,
A.
,
2014
,
Simulation-Based Optimization
,
Springer
,
New York
.
48.
Reed
,
R. D.
, and
Marks
,
R. J.
,
1998
,
Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks
,
MIT Press
,
Cambridge, MA
.
49.
Seto
,
K.
,
Toba
,
Y.
, and
Matsumoto
,
Y.
,
1995
, “
Reduced Order Modeling and Vibration Control Methods for Flexible Structures Arranged in Parallel
,”
American Control Conference
(
ACC
),
Seattle, WA
, June 21–23, Vol. 3, pp.
2344
2348
.
50.
Halevi
,
Y.
, and
Wagner-Nachshoni
,
C.
,
2006
, “
Transfer Function Modeling of Multi-Link Flexible Structures
,”
J. Sound Vib.
,
296
(
1
), pp.
73
90
.
51.
Tan
,
K. K.
,
Dou
,
H. F.
, and
Tang
,
K. Z.
,
2001
, “
Precision Motion Control System for Ultra-Precision Semiconductor and Electronic Components Manufacturing
,”
51st Electronic Components and Technology Conference
(
ECTC
),
Orlando, FL
, May 29–June 1, pp.
1372
1379
.
52.
Luces
,
M.
,
Boyraz
,
P.
,
Mahmoodi
,
M.
,
Mills
,
J. K.
, and
Benhabib
,
B.
,
2014
, “
Trajectory Planning for Redundant Parallel-Kinematic-Mechanisms
,”
CIRP, 3rd International Conference on Virtual Machining Process Technology
,
Calgary, Canada
.
53.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
1979
, “
Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
(
2
), pp.
239
245
.
You do not currently have access to this content.