An efficient yet accurate model of the continuum robot is the main component for its real-time control, simulation as well as localization. Previous models of the continuum robot, based on rod theory, suffer from high computational burden. The models also require a priori knowledge of the robot environment. This paper presents an efficient static model for the planar continuum robot that experiences external forces at the tip as a result of contact with its surroundings (measured by the built-in force sensors), thus no a priori information about the environment is required. The typical example of such robots is steerable catheters used in medical operations. The proposed approach involves discretizing the robot backbone curve to elastic arc elements. After deriving the equilibrium equations for the infinitesimal elements, a recursive algorithm with the time complexity of O(n) is proposed for realizing the shape of the robot as a result of the external force. Accuracy of the proposed method is evaluated both theoretically and experimentally for a case study, i.e., an intracardiac ablation catheter. Results validate the accuracy and time-efficiency of the proposed approach for real-time applications.

References

1.
Sears
,
P.
, and
Dupont
,
P.
,
2006
, “
A Steerable Needle Technology Using Curved Concentric Tubes
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Beijing, China, October 9–15, pp.
2850
2856
.10.1109/IROS.2006.282072
2.
Webster
,
R.
,
Okamura
,
A. M.
, and
Cowan
,
N. J.
,
2006
, “
Toward Active Cannulas: Miniature Snake-Like Surgical Robots
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Beijing, China, October 9–15, pp.
2857
2863
.10.1109/IROS.2006.282073
3.
Bailly
,
Y.
, and
Amirat
,
Y.
,
2005
, “
Modeling and Control of a Hybrid Continuum Active Catheter for Aortic Aneurysm Treatment
,”
IEEE International Conference on Robotics and Automation
(
ICRA 2005
), Barcelona, Spain, April 18–22, pp.
924
929
.10.1109/ROBOT.2005.1570235
4.
Chen
,
G.
,
Pham
,
M. T.
, and
Redarce
,
T.
,
2009
, “
Sensor-Based Guidance Control of a Continuum Robot for a Semi-Autonomous Colonoscopy
,”
Rob. Autom. Syst.
,
57
(
6
), pp.
712
722
.10.1016/j.robot.2008.11.001
5.
Ganji
,
Y.
, and
Janabi-Sharifi
,
F.
,
2009
, “
Catheter Kinematics for Intracardiac Navigation
,”
IEEE Trans. Biomed. Eng.
,
56
(
3
), pp.
621
632
.10.1109/TBME.2009.2013134
6.
Dore
,
A.
,
Smoljkic
,
G.
,
Poorten
,
E. V.
,
Sette
,
M.
,
Sloten
,
J. V.
, and
Yang
,
G.-Z.
,
2012
, “
Catheter Navigation Based on Probabilistic Fusion of Electromagnetic Tracking and Physically-Based Simulation
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Villamoura, Portugal, October 7–12, pp.
3806
3811
.10.1109/IROS.2012.6386139
7.
Webster
,
R. J.
, and
Jones
,
B. A.
,
2010
, “
Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review
,”
Int. J. Robot. Res.
,
29
(
13
), pp.
1661
1683
.10.1177/0278364910368147
8.
Rucker
,
D.
, and
Webster
,
R.
,
2011
, “
Statics and Dynamics of Continuum Robots With General Tendon Routing and External Loading
,”
IEEE Trans. Rob.
,
27
(
6
), pp.
1033
1044
.10.1109/TRO.2011.2160469
9.
Jones
,
B. A.
,
Gray
,
R. L.
, and
Turlapati
,
K.
,
2009
, “
Three Dimensional Statics for Continuum Robotics
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS 2009
), St. Louis, MO, October 10–15, pp.
2659
2664
.10.1109/IROS.2009.5354199
10.
Rucker
,
D.
,
Jones
,
B. A.
, and
Webster
,
R. J.
,
2010
, “
A Geometrically Exact Model for Externally Loaded Concentric-Tube Continuum Robots
,”
IEEE Trans. Rob.
,
26
(
5
), pp.
769
780
.10.1109/TRO.2010.2062570
11.
Trivedi
,
D.
,
Lotfi
,
A.
, and
Rahn
,
C. D.
,
2008
, “
Geometrically Exact Models for Soft Robotic Manipulators
,”
IEEE Trans. Rob.
,
24
(
4
), pp.
773
780
.10.1109/TRO.2008.924923
12.
Mochiyama
,
H.
, and
Suzuki
,
T.
,
2002
, “
Dynamical Modelling of a Hyper-Flexible Manipulator
,”
41st SICE Annual Conference
(
SICE 2002
), Osaka, Japan, August 5–7, pp.
1505
1510
.10.1109/SICE.2002.1196530
13.
Tatlicioglu
,
E.
,
Walker
,
I. D.
, and
Dawson
,
D. M.
,
2007
, “
Dynamic Modelling for Planar Extensible Continuum Robot Manipulators
,”
IEEE International Conference on Robots and Automation
, Rome, Italy, April 10–14, pp.
1357
1362
.10.1109/ROBOT.2007.363173
14.
Gravagne
,
I. A.
,
Rahn
,
C. D.
, and
Walker
,
I. D.
,
2003
, “
Large Deflection Dynamics and Control for Planar Continuum Robots
,”
IEEE/ASME Trans. Mechatron.
,
8
(
2
), pp.
299
307
.10.1109/TMECH.2003.812829
15.
Luboz
,
V.
,
Lai
,
J.
,
Blazewski
,
R.
,
Gould
,
D.
, and
Bello
,
F.
,
2008
, “
A Virtual Environment for Core Skills Training in Vascular Interventional Radiology
,” 4th International Symposium on Biomedical Simulation (
ISBMS 2008
), London, UK, July 7–8, pp.
215
220
.10.1007/978-3-540-70521-5
16.
Alderliesten
,
T.
,
Bosman
,
P. A.
, and
Niessen
,
W. J.
,
2007
, “
Towards a Real-Time Minimally-Invasive Vascular Intervention Simulation System
,”
IEEE Trans. Med. Imaging
,
26
(
1
), pp.
128
132
.10.1109/TMI.2006.886814
17.
Anjyo
,
K.-I.
,
Usami
,
Y.
, and
Kurihara
,
T.
,
1992
, “
A Simple Method for Extracting the Natural Beauty of Hair
,”
19th Annual Conference on Computer Graphics and Interactive Techniques
(
SIGGRAPH '92
), Chicago, IL, July 27–31, pp.
111
120
.10.1145/142920.134021
18.
Moll
,
M.
, and
Kavraki
,
L. E.
,
2006
, “
Path Planning for Deformable Linear Objects
,”
IEEE Trans. Rob.
,
22
(
4
), pp.
625
636
.10.1109/TRO.2006.878933
19.
Lenoir
,
J.
,
Meseure
,
P.
,
Grisoni
,
L.
, and
Chaillou
,
C.
,
2002
, “
Surgical Thread Simulation
,” Modelling & Simulation for Computer-Aided Medicine and Surgery (
MS4CMS'02
), Rocquencourt, France, November 12–15, pp.
102
107
.10.1051/proc:2002017
20.
Theetten
,
A.
,
Grisoni
,
L.
,
Duriez
,
C.
, and
Merlhiot
,
X.
,
2007
, “
Quasi-Dynamic Splines
,”
ACM Symposium on Solid and Physical Modeling
(
SPM'07
), Beijing, China, June 4–6, pp.
409
414
.10.1145/1236246.1236305
21.
Wakamatsu
,
H.
, and
Hirai
,
S.
,
2004
, “
Static Modeling of Linear Object Deformation Based on Differential Geometry
,”
Int. J. Rob. Res.
,
23
(
3
), pp.
293
311
.10.1177/0278364904041882
22.
Li
,
S.
,
Qin
,
J.
,
Gao
,
J.
,
Chui
,
Y.-P.
, and
Heng
,
P.-A.
,
2011
, “
A Novel FEM-Based Numerical Solver for Interactive Catheter Simulation in Virtual Catheterization
,”
J. Biomed. Imaging
,
2011
, p.
815246
.10.1155/2011/815246
23.
Yokoyama
,
K.
,
Nakagawa
,
H.
,
Shah
,
D. C.
,
Lambert
H.
,
Leo
,
G.
,
Aeby
,
N.
,
Ikeda
,
A.
,
Pitha
,
J. V.
,
Sharma
,
T.
,
Lazzara
,
R.
, and
Jackman
,
W. M.
,
2008
, “
Novel Contact Force Sensor Incorporated in Irrigated Radiofrequency Ablation Catheter Predicts Lesion Size and Incidence of Steam Pop and Thrombus: Clinical Perspective
,”
Circ.: Arrhythmia Electrophysiol.
,
1
(
5
), pp.
354
362
.10.1161/CIRCEP.108.803650
24.
Featherstone
,
R.
,
1984
, “
Robot Dynamics Algorithms
,” Ph.D. thesis, Department of Artificial Intelligence, University of Edinburgh, Edinburgh, UK.
25.
Antman
,
S.
,
2005
,
Nonlinear Problems of Elasticity
, Vol.
107
,
Springer
,
New York
.
26.
Perna
,
F.
,
Heist
,
E. K.
,
Danik
,
S. B.
,
Barrett
,
C. D.
,
Ruskin
,
J. N.
, and
Mansour
,
M.
,
2011
, “
Assessment of Catheter Tip Contact Force Resulting in Cardiac Perforation in Swine Atria Using Force Sensing Technology: Clinical Perspective
,”
Circ.: Arrhythmia Electrophysiol.
,
4
(
2
), pp.
218
224
.10.1161/CIRCEP.110.959429
27.
Santangeli
,
P.
,
di Baise
,
L.
,
Burkhardt
,
D. J.
,
Horton
,
R.
,
Sanchez
,
J.
,
Bai
,
R.
,
Pump
,
A.
,
Perez
,
M.
,
Paul
,
J. W.
,
Natale
,
A.
, and
Al-Ahmad
,
A.
,
2008
, “
Relationship Between Catheter Forces, Lesion Characteristics, Popping, and Char Formation: Experience With Robotic Navigation System
,”
J. Cardiovasc. Electrophysiol.
,
20
(
4
), pp.
436
440
.10.1111/j.1540-8167.2008.01355.x
28.
Lagarias
,
J. C.
,
Reeds
,
J. A.
,
Wright
,
M. H.
, and
Wright
,
P. E.
,
1998
, “
Convergence Properties of the Nelder–Mead Simplex Method in Low Dimensions
,”
SIAM J. Optim.
,
9
(
1
), pp.
112
147
.10.1137/S1052623496303470
You do not currently have access to this content.