Abstract

Traditional cable-driven parallel robots (CDPRs) are limited by the collision-free constraints imposed by cables and environmental obstacles; however, motion planning cannot avoid all obstacles, limiting the CDPR's workspace. This article presents a kinematic model for the CDPR that accounts for environmental collisions with straight lines, cylinders, and cuboids enabling the cables to keep operating even after colliding with obstacles. First, kinematic and static analyses were performed. Second, a collision contact model for a single cable attached to a common geometric obstacle such as straight lines, cylinders, and cuboids was established, collision detection between the cable and obstacle was completed, and a kinematic model for the CDPR considering environmental collisions with straight lines, cylinders, and cuboids involving a single obstacle was proposed. Finally, an algorithm solving the wrench feasible workspace considering environmental collisions with cylinders and cuboids was proposed and simulated. An experimental prototype was developed to perform relevant experiments. Results show that the robot can operate in the presence of unavoidable obstacles, effectively reducing the installation environment requirements and expanding the workspace.

References

1.
Tang
,
L.
,
Shi
,
P.
,
Wu
,
L.
,
Wu
,
X.
, and
Tang
,
X.
,
2019
, “
Singularity Analysis on a Special Class of Cable-Suspended Parallel Mechanisms With Pairwise Cable Arrangement and Actuation Redundancy.
,”
ASME J. Mech. Des.
,
142
(
2
), p.
024501
.
2.
Duan
,
J.
,
Liu
,
H.
,
Zhang
,
Z.
,
Shao
,
Z.
,
Meng
,
X.
,
Lv
,
J.
, and
Huang
,
M.
,
2025
, “
Reconfiguration and Performance Evaluation of TBot Cable-Driven Parallel Robot
,”
ASME J. Mech. Rob.
,
17
(
1
), p.
010909
.
3.
Ferravante
,
V.
,
Riva
,
E.
,
Taghavi
,
M.
,
Braghin
,
F.
, and
Bock
,
T.
,
2019
, “
Dynamic Analysis of High Precision Construction Cable-Driven Parallel Robots
,”
Mech. Mach. Theory
,
135
, pp.
54
64
.
4.
Zi
,
B.
,
Wang
,
N.
,
Qian
,
S.
, and
Bao
,
K.
,
2019
, “
Design, Stiffness Analysis and Experimental Study of a Cable-Driven Parallel 3d Printer
,”
Mech. Mach. Theory
,
132
, pp.
207
222
.
5.
Zhao
,
J.
,
Zi
,
B.
,
Wang
,
W.
,
Xie
,
M.
, and
Ding
,
H.
,
2024
, “
Design and Tension Distribution Optimization of a 9-DOF Cable-Driven Parallel Spray-Painting Robot With 3 Degrees of Redundancy
,”
Mech. Mach. Theory
,
203
, p.
105818
.
6.
Zi
,
B.
,
Lin
,
J.
, and
Qian
,
S.
,
2015
, “
Localization, Obstacle Avoidance Planning and Control of a Cooperative Cable Parallel Robot for Multiple Mobile Cranes
,”
Rob. Comput. Integr. Manuf.
,
34
, pp.
105
123
.
7.
Jin
,
L.
,
Taha
,
T.
, and
Gan
,
D.
,
2023
, “Kinetostatic Modeling and Configuration Variation Analysis of Cable-Driven Parallel Robots on Spherical Surfaces,”
Cable-Driven Parallel Robots
,
S.
Caro
,
A.
Pott
, and
T.
Bruckmann
, eds.,
Springer Nature Switzerland
,
Cham, Switzerland
, pp.
40
51
.
8.
Zhou
,
B.
,
Wu
,
S.
,
Zi
,
B.
, and
Zhu
,
W.
,
2025
, “
Design and Optimization of a Cable-Driven Parallel Polishing Robot With Kinematic Error Modeling
,”
ASME J. Mech. Des.
,
147
(
1
), p.
013304
.
9.
Zhou
,
B.
,
Li
,
S.
,
Zi
,
B.
,
Chen
,
B.
, and
Zhu
,
W.
,
2023
, “
Multi-objective Optimal Design of a Cable-Driven Parallel Robot Based on an Adaptive Adjustment Inertia Weight Particle Swarm Optimization Algorithm
,”
ASME J. Mech. Des.
,
145
(
8
), p.
083301
.
10.
Peng
,
Y.
, and
Bu
,
W.
,
2021
, “
Analysis of Reachable Workspace for Spatial Three-Cable Under-Constrained Suspended Cable-Driven Parallel Robots
,”
ASME J. Mech. Rob.
,
13
(
6
), p.
061002
.
11.
Qian
,
S.
,
Bao
,
K.
,
Zi
,
B.
, and
Zhu
,
W. D.
,
2020
, “
Dynamic Trajectory Planning for a Three Degrees-of-Freedom Cable-Driven Parallel Robot Using Quintic B-Splines.
,”
ASME J. Mech. Des.
,
142
(
7
), p.
073301
.
12.
Zhang
,
W.
,
Shang
,
W.
,
Zhang
,
B.
,
Zhang
,
F.
, and
Cong
,
S.
,
2016
, “
Stiffness-Based Trajectory Planning of a 6-DOF Cable-Driven Parallel Manipulator
,”
J. Mech. Eng. Sci.
,
231
(
21
), pp.
3999
4011
.
13.
Song
,
C.
, and
Lau
,
D.
,
2022
, “
Workspace-Based Model Predictive Control for Cable-Driven Robots
,”
IEEE Trans. Rob.
,
38
(
4
), pp.
2577
2596
.
14.
Diao
,
X.
, and
Ma
,
O.
,
2007
, “
A Method of Verifying Force-Closure Condition for General Cable Manipulators With Seven Cables
,”
Mech. Mach. Theory
,
42
(
42
), pp.
1563
1576
.
15.
Bosscher
,
P.
,
Riechel
,
A.
, and
Ebert-uphoff
,
I.
,
2006
, “
Wrench-Feasible Workspace Generation for Cable-Driven Robots
,”
IEEE Trans. Rob.
,
22
(
5
), pp.
890
902
.
16.
Barrette
,
G.
, and
Gosselin
,
C.
,
2005
, “
Determination of the Dynamic Workspace of Cable-Driven Planar Parallel Mechanisms
,”
ASME J. Mech. Des.
,
127
(
2
), pp.
242
248
.
17.
Shao
,
Z.
,
Li
,
T.
,
Tang
,
X.
,
Tang
,
L.
, and
Deng
,
H.
,
2018
, “
Research on the Dynamic Trajectory of Spatial Cable-Suspended Parallel Manipulators With Actuation Redundancy
,”
Mechatronics
,
49
, pp.
26
35
.
18.
Andrea
,
M.
,
Sergio
,
J.
,
Antonio
,
G.
,
Angel
,
G.
,
Alfonso
,
L.
, and
Guillermo
,
R.
,
2023
, “
A Novel Design for Fully Constrained Planar Cable-Driven Parallel Robots to Increase Their Wrench-Feasible Workspace
,”
Mech. Mach. Theory
,
180
, p.
105159
.
19.
Cheng
,
H. H.
, and
Lau
,
D.
,
2022
, “
Ray-Based Cable and Obstacle Interference-Free Workspace for Cable-Driven Parallel Robots
,”
Mech. Mach. Theory
,
172
, p.
104782
.
20.
Qin
,
Z.
,
Liu
,
Z.
,
Liu
,
Y.
,
Gao
,
H.
,
Sun
,
C.
, and
Sun
,
G.
,
2022
, “
Workspace Analysis and Optimal Design of Dual Cable-Suspended Robots for Construction
,”
Mech. Mach. Theory
,
171
, p.
104763
.
21.
Lei
,
M.
, and
Oetomo
,
D.
,
2016
, “
Cable Wrapping Phenomenon in Cable-Driven Parallel Manipulators
,”
J. Rob. Mechatron.
,
28
(
3
), pp.
386
396
.
22.
Lei
,
M.
,
2020
, “
Dynamics of Cable Driven Parallel Manipulator Allowing Cable Wrapping Over Rigid Link
,”
2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
,
Boston, MA
,
July 6–9
, pp.
215
221
.
23.
Sun
,
C.
,
Gao
,
H.
,
Liu
,
Z.
,
Xiang
,
S.
,
Yu
,
H.
,
Li
,
N.
, and
Deng
,
Z.
,
2022
, “
Design of Spatial Adaptive Cable-Driven Parallel Robots With an Unlimited Rotation Axis Using the Cable Wrapping Phenomenon
,”
Mech. Mach. Theory
,
171
, p.
104720
.
24.
Xiong
,
H.
,
Xu
,
Y.
,
Zeng
,
W.
,
Zou
,
Y.
, and
Lou
,
Y.
,
2024
, “
Data-Driven Kinematic Modeling and Control of a Cable-Driven Parallel Mechanism Allowing Cables to Wrap on Rigid Bodies
,”
IEEE Trans. Autom. Sci. Eng.
,
21
(
4
), pp.
6587
6601
.
25.
Yonatan
,
W.
,
Nir
,
S.
, and
Moshe
,
S.
,
2008
, “
Wire-Driven Parallel Robot: Permitting Collisions Between Wires
,”
Int. J. Rob. Res.
,
27
(
9
), pp.
1007
1026
.
26.
Xiong
,
H.
,
Xu
,
Y.
,
Yu
,
Y.
, and
Lou
,
Y.
,
2025
, “
Cable Path Analysis and Kinematic Control of a Cable-Driven Parallel Robot Allowing Cables to Wrap on Cylinders or Spheres.
,”
ASME J. Mech. Rob.
,
17
(
1
), p.
010903
.
27.
Xu
,
G.
,
Zhu
,
H.
,
Xiong
,
H.
, and
Lou
,
Y.
,
2024
, “
Data-Driven Dynamics Modeling and Control Strategy for a Planar n-DOF Cable-Driven Parallel Robot Driven by n+1 Cables Allowing Collisions
,”
ASME J. Mech. Rob.
,
16
(
5
), p.
051008
.
28.
Rushton
,
M.
, and
Khajepour
,
A.
,
2021
, “
Planar Variable Structure Cable-Driven Parallel Robots for Circumventing Obstacles
,”
ASME J. Mech. Rob.
,
13
(
2
), p.
021011
.
29.
Rushton
,
M.
, and
Khajepour
,
A.
,
2023
, “
An Atlas-Based Approach to Planar Variable-Structure Cable-Driven Parallel Robot Configuration-Space Representation
,”
IEEE Trans. Rob.
,
39
(
2
), pp.
1594
1606
.
30.
Sun
,
C.
,
Gao
,
H.
,
Liu
,
Z.
,
Xiang
,
S.
,
Yu
,
H.
,
Li
,
N.
, and
Deng
,
Z.
,
2021
, “
Design and Optimization of Three-Degree-Of-Freedom Planar Adaptive Cable-Driven Parallel Robots Using the Cable Wrapping Phenomenon
,”
Mech. Mach. Theory
,
166
, p.
104475
.
31.
Lei
,
M.
, and
Oetomo
,
D.
,
2013
, “
Modelling of Cable Wrapping Phenomenon Towards Improved Cable-Driven Mechanisms
,”
2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
Wollongong, NSW, Australia
,
July 9–12
, pp.
649
655
.
You do not currently have access to this content.