Abstract

In this article, a large-stroke compact of z-θxy piezoelectric nanopositioning stage and the corresponding control method are designed. A two-stage rhombic amplifying mechanism equipped with piezoelectric actuator (PZTA) is designed, which provides driving energy through flexible lamina deformation. A large-stroke compact piezoelectric nanopositioning stage is designed using four-corner arrangement. Based on the statics analysis, a dynamic model of stage is constructed to analyze the natural frequency and bandwidth. The size optimization algorithm is used to further improve the dynamic response characteristics of the stage. The optimization results are then validated using finite element analysis (FEA). The compound controller employs a rate-dependent model combined with proportional-integral (PI) control. Experimental results demonstrate that the stage configuration achieves nanoscale resolution, a large displacement stroke, and high compactness. Furthermore, the controller exhibits excellent rate-dependent tracking accuracy, precise positioning, and robust dynamic performance.

References

1.
Ting
,
Y.
,
Li
,
C. C.
, and
Lin
,
C. M.
,
2011
, “
Controller Design for High-Frequency Cutting Using a Piezo-Driven Microstage
,”
Precis. Eng.
,
35
(
3
), pp.
455
463
.
2.
Heamawatanachai
,
S.
, and
Bamberg
,
E.
,
2009
, “
Design and Characterization of a PZT Driven Micromachining Tool Based on Single-Point Tool Tip Geometry
,”
Precis. Eng.
,
33
(
4
), pp.
387
394
.
3.
Bowen
,
J.
, and
Cheneler
,
D.
,
2017
, “
Selecting Suitable Image Dimensions for Scanning Probe Microscopy
,”
Surf. Interfaces
,
9
, pp.
133
142
.
4.
Wen
,
H.
,
Chen
,
L.
,
Huang
,
C.
, and
Wen
,
S.
,
2008
, “
A Full-Duplex Radio-Over-Fiber System Using Direct Modulation Laser to Generate Optical Millimeter-Wave and Wavelength Reuse for Uplink Connection
,”
Opt. Commun.
,
281
(
8
), pp.
2083
2088
.
5.
Wang
,
Y.
,
Ding
,
H.
,
Le
,
X.
,
Wang
,
W.
, and
Xie
,
J.
,
2017
, “
A MEMS Piezoelectric In-Plane Resonant Accelerometer Based on Aluminum Nitride With Two-Stage Microleverage Mechanism
,”
Sens. Actuators, A: Phys.
,
254
, pp.
126
133
.
6.
Chakaroun
,
M.
,
Djeziri
,
M.
,
Ouladsine
,
M.
, and
Pinaton
,
J.
,
2014
, “
Qualitative Diagnosis Method Based on Process History in Semiconductor Manufacturing Process
,”
IFAC Proc.
,
47
(
3
), pp.
4340
4345
.
7.
Li
,
J.
,
Liu
,
H.
, and
Zhao
,
H.
,
2017
, “
A Compact 2-DOF Piezoelectric-Driven Platform Based on “Z-Shaped” Flexure Hinges
,”
Micromachines
,
8
(
8
), p.
245
.
8.
Chen
,
Z.
,
Shi
,
J.
,
Li
,
Z.
,
Zhong
,
X.
, and
Zhang
,
X.
,
2022
, “
Damped Decoupled XY Nanopositioning Stage Embedding Graded Local Resonators
,”
IEEE/ASME Trans. Mechatron.
,
27
(
1
), pp.
256
267
.
9.
Yang
,
J.
, and
Yan
,
P.
,
2024
, “
Design and Analysis of a Symmetric Overconstrained Compliant Tilt/Tip Stage Based on a Hybrid Transmission Ratio Model
,”
ASME J. Mech. Rob.
,
16
(
7
), p.
071017
.
10.
Qin
,
Y.
,
Shirinzadeh
,
B.
,
Tian
,
Y.
,
Zhang
,
D.
, and
Bhagat
,
U.
,
2014
, “
Design and Computational Optimization of a Decoupled 2-DOF Monolithic Mechanism
,”
IEEE/ASME Trans. Mechatron.
,
19
(
3
), pp.
872
881
.
11.
Ling
,
M.
,
Cao
,
J.
,
Jiang
,
Z.
,
Zeng
,
M.
, and
Li
,
Q.
,
2019
, “
Optimal Design of a Piezo-Actuated 2-DOF Millimeter-Range Monolithic Flexure Mechanism With a Pseudo-Static Model
,”
Mech. Syst. Signal Process.
,
115
, pp.
120
131
.
12.
Yuan
,
X.
,
Liu
,
Y.
,
Zou
,
H.
,
Ji
,
J.
,
Zhou
,
T.
, and
Wang
,
W.
,
2022
, “
Design and Analysis of a 2-D Piezoelectric Platform Based on Three-Stage Amplification and L-Shaped Guiding
,”
IEEE/INST Electr. Electron. Eng. Inc.
,
71
, p.
7505712
.
13.
Zhang
,
T.
,
Xiong
,
L.
,
Pan
,
Z.
,
Zhang
,
C.
,
Qu
,
W.
,
Wang
,
Y.
, and
Yang
,
C.
,
2022
, “
Design and Analysis of XY Large Travel Micro Stage Based on Secondary Symmetric Lever Amplification
,”
Micromachines
,
14
(
9
), p.
1805
.
14.
Liu
,
P.
,
Yan
,
P.
, and
Özbay
,
H.
,
2018
, “
Design and Trajectory Tracking Control of a Piezoelectric Nano-Manipulator With Actuator Saturations
,”
Mech. Syst. Signal Process.
,
111
, pp.
529
544
.
15.
Wang
,
F.
,
Huo
,
Z.
,
Liang
,
C.
,
Shi
,
B.
,
Tian
,
Y.
,
Zhao
,
X.
, and
Zhang
,
D.
,
2019
, “
A Novel Actuator-Internal Micro/Nano Positioning Stage With an Arch-Shape Bridge-Type Amplifier
,”
IEEE Trans. Ind. Electron.
,
66
(
12
), pp.
9161
9172
.
16.
Choi
,
K.-B.
,
Lee
,
J.
,
Kim
,
G.
,
Lim
,
H.
,
Kwon
,
S.
, and
Lee
,
S.-C.
,
2020
, “
Design and Analysis of a Flexure-Based Parallel XY Stage Driven by Differential Piezo Forces
,”
Int. J. Precis. Eng. Manuf.
,
21
(
8
), pp.
1547
1561
.
17.
Liao
,
C.
,
Xu
,
M.
,
Xiao
,
R.
, and
Han
,
W.
,
2020
, “
Integrated Design of Piezo-Actuated 2-DOF Submillimeter-Range Super-Resolution Platform With Self-Sensing Unit
,”
Mech. Syst. Signal Process.
,
139
, p.
106569
.
18.
Guo
,
Z.
,
Tian
,
Y.
,
Liu
,
C.
,
Wang
,
F.
,
Liu
,
X.
,
Shirinzadeh
,
B.
, and
Zhang
,
D.
,
2015
, “
Design and Control Methodology of a 3-DOF Flexure-Based Mechanism for Micro/Nano-Positioning
,”
Rob. Comput. Integr. Manuf.
,
32
, pp.
93
105
.
19.
Cai
,
K.
,
Tian
,
Y.
,
Wang
,
F.
,
Zhang
,
D.
, and
Shirinzadeh
,
B.
,
2016
, “
Development of a Piezo-Driven 3-DOF Stage With T-Shape Flexible Hinge Mechanism
,”
Rob. Comput. Integr. Manuf.
,
37
, pp.
125
138
.
20.
Lee
,
C.
,
Lee
,
J. W.
,
Ryu
,
S. G.
, and
Oh
,
J. H.
,
2019
, “
Optimum Design of a Large Area, Flexure Based XYθ Mask Alignment Stage for a 12-Inch Wafer Using Grey Relation Analysis
,”
Rob. Comput. Integr. Manuf.
,
58
, pp.
109
119
.
21.
Chang
,
Q.
,
Chen
,
W.
,
Liu
,
J.
,
Yu
,
H.
,
Deng
,
J.
, and
Liu
,
Y.
,
2021
, “
Development of a Novel Two-DOF Piezo-Driven Fast Steering Mirror With High Stiffness and Good Decoupling Characteristic
,”
Mech. Syst. Signal Process.
,
159
, p.
107851
.
22.
Qu
,
J.
,
Chen
,
W.
,
Zhang
,
J.
, and
Chen
,
W.
,
2016
, “
A Piezo-Driven 2-DOF Compliant Micropositioning Stage With Remote Center of Motion
,”
Sens. Actuators, A: Phys.
,
239
, pp.
114
126
.
23.
Xie
,
Y.
,
Li
,
Y.
,
Cheung
,
C.
,
Zhu
,
Z.
, and
Chen
,
X.
,
2021
, “
Design and Analysis of a Novel Compact XYZ Parallel Precision Positioning Stage
,”
Microsyst. Technol. Micro Nanosyst. Inf. Storage Process. Syst.
,
27
(
5
), pp.
1925
1932
.
24.
Yin
,
Z.
,
Qin
,
R.
,
Du
,
H.
,
Zhou
,
W.
,
Sun
,
J.
,
Sun
,
D.
, and
Liu
,
Y.
,
2023
, “
Design and Parameter Identification for a Positioning Platform With a Large Stroke and High Precision for Segmented Mirrors
,”
Micromachines.
,
14
(
4
), p.
713
.
25.
Chen
,
N.
, and
Tian
,
C.
,
2021
, “
Design, Modeling and Testing of a 3-DOF Flexible Piezoelectric Thin Sheet Nanopositioner
,”
Sens. Actuators A Phys.
,
323
, p.
112660
.
26.
Lee
,
H.
,
Kim
,
H. C.
,
Kim
,
H. Y.
, and
Gweon
,
D. G.
,
2013
, “
Optimal Design and Experiment of a Three-Axis Out-of-Plane Nano Positioning Stage Using a New Compact Bridge-Type Displacement Amplifier
,”
Rev. Sci. Instrum.
,
84
, p.
115103
.
27.
Kim
,
H. S.
, and
Cho
,
Y. M.
,
2009
, “
Design and Modeling of a Novel 3-DOF Precision Micro-Stage
,”
Mechatronics
,
19
(
5
), pp.
598
608
.
28.
Yang
,
M.-J.
,
Li
,
C.-X.
,
Gu
,
G.-Y.
, and
Zhu
,
L.-M.
,
2015
, “
Modeling and Compensating the Dynamic Hysteresis of Piezoelectric Actuators via a Modified Rate-Dependent Prandtl–Ishlinskii Model
,”
Smart Mater. Struct.
,
24
, p.
125006
.
29.
Kim
,
H.
,
Kim
,
J.
,
Na
,
T.
,
Park
,
K.
, and
Oh
,
I.
,
2018
, “
Motion Control of Piezoelectric Tripod Platform via Feedforward Hysteresis Compensation
,”
Adv. Mater. Technol.
,
3
(
12
), p.
1800298
.
30.
Huang
,
W.
,
Li
,
L.
,
Li
,
Z.
,
Zhu
,
Z.
, and
Zhu
,
L.
,
2021
, “
Robust High-Bandwidth Control of Nano-Positioning Stages With Kalman Filter Based Extended State Observer and H∞ Control
,”
Rev. Sci. Instrum.
,
92
(
6
), p.
065003
.
31.
Li
,
Y.
, and
Zhang
,
Z.
,
2024
, “
High-Order Nonsingular Fast Integral Terminal Sliding Mode Control With Perturbation Estimation for a Class of Nonlinear Hysteresis Systems
,”
IEEE Trans. Ind. Electron.
,
972
(
2
), pp.
2045
2055
.
32.
Wang
,
Y.
,
Yu
,
Y.
,
Shen
,
C.
, and
Zhou
,
M.
,
2023
, “
Precise Motion Tracking of Piezo-Actuated Stages via a Neural Network-Based Data-Driven Adaptive Predictive Controller
,”
Nonlinear Dyn.
,
111
(
20
), pp.
19047
19072
.
33.
Wang
,
H.
,
Li
,
Q.
,
Zhou
,
F.
, and
Zhang
,
J.
,
2024
, “
High-Precision Positioning Stage Control Based on a Modified Disturbance Observer
,”
Sensors
,
24
(
2
), p.
591
.
34.
Kim
,
H.
,
Kim
,
J.
,
Ahn
,
D.
, and
Gweon
,
D.
,
2013
, “
Development of a Nanoprecision 3-DOF Vertical Positioning System With a Flexure Hinge, IEEE Trans
,”
Nanotechnology
,
12
(
2
), pp.
234
245
.
35.
Zhu
,
W.
,
Yang
,
F.
, and
Rui
,
X.
,
2018
, “
Robust Independent Modal Space Control of a Coupled Nano-Positioning Piezo-Stage
,”
Mech. Syst. Signal Process.
,
106
, pp.
466
478
.
36.
Yang
,
J.
, and
Yan
,
P.
,
2023
, “
Generalized Model and Performance Analysis of Elliptical-Fillet Cross-Sectional Flexure Hinges
,”
Proc. Inst. Mech. Eng. Part C-J. Mech. Eng. Sci.
,
238
(
5
), pp.
1355
1365
.
You do not currently have access to this content.