Abstract

Safety is a crucial performance indicator for rehabilitation medical equipment; this article proposes a safety evaluation method for a parallel cable-driven upper limb rehabilitation robot (PCUR), wherein the safety of rehabilitation training is monitored in real time through the establishment of a safety performance factor. The stability factor is determined by the position of the moving platform's (MP) center point, cable tension, and system stiffness, while the speed factor is defined by the movement speed of the patient's upper limb. The safety performance factor is calculated as the product of the stability factor and the speed factor. A simulation analysis of PCUR safety evaluation is conducted and the validity of the proposed method is verified through motion control experiments.

References

1.
Benjamin Emelia
,
J.
, et al
,
2019
, “
Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association
,”
Circulation
,
139
(
10
), pp.
e56
e528
.
2.
McDonald
,
M. W.
,
Black
,
S. E.
,
Copland
,
D. A.
,
Corbett
,
D.
,
Dijkhuizen
,
R. M.
,
Farr
,
T. D.
,
Jeffers
,
M. S.
, et al
,
2019
, “
Cognition in Stroke Rehabilitation and Recovery Research: Consensus-Based Core Recommendations From the Second Stroke Recovery and Rehabilitation Roundtable
,”
Int. J. Stroke
,
14
(
8
), pp.
774
782
.
3.
Gittler
,
M.
, and
Davis
,
A. M.
,
2018
, “
Guidelines for Adult Stroke Rehabilitation and Recovery
,”
JAMA
,
319
(
8
), p.
820
.
4.
Stinear
,
C. M.
,
Lang
,
C. E.
,
Zeiler
,
S.
, and
Byblow
,
W. D.
,
2020
, “
Advances and Challenges in Stroke Rehabilitation
,”
Lancet Neurol.
,
19
(
4
), pp.
348
360
.
5.
Huang
,
V. S.
, and
Krakauer
,
J. W.
,
2009
, “
Robotic [Q6]Neurorehabilitation: A Computational Motor Learning Perspective
,”
J. NeuroEng. Rehabil.
,
6
(
1
), pp.
1
5
.
6.
Mehrholz
,
J.
,
Pohl
,
M.
,
Platz
,
T.
,
Kugler
,
J.
, and
Elsner
,
B.
,
2015
, “
Electromechanical and Robot-Assisted Arm Training for Improving Activities of Daily Living, Arm Function, and Arm Muscle Strength After Stroke
,”
Cochr. Database Syst. Rev.
,
1
(
11
), pp.
1
112
.
7.
Laut
,
J.
,
Porfiri
,
M.
, and
Raghavan
,
P.
,
2016
, “
The Present and Future of Robotic Technology in Rehabilitation
,”
Curr. Phys. Med. Rehabil. Rep.
,
4
(
4
), pp.
312
319
.
8.
Gouttefarde
,
M.
,
Lamaury
,
J.
,
Reichert
,
C.
, and
Bruckmann
,
T.
,
2015
, “
A Versatile Tension Distribution Algorithm for -DOF Parallel Robots Driven by n + 2 Cables
,”
IEEE Trans. Rob.
,
31
(
6
), pp.
1444
1457
.
9.
Liu
,
H.
,
Gosselin
,
C.
, and
Laliberté
,
T.
,
2012
, “
Conceptual Design and Static Analysis of Novel Planar Spring-Loaded Cable-Loop-Driven Parallel Mechanisms
,”
ASME J. Mech. Rob.
,
4
(
2
), pp.
20
32
.
10.
Zanotto
,
D.
,
Rosati
,
G.
,
Minto
,
S.
, and
Rossi
,
A.
,
(2014)
, “
Sophia-3: A Semiadaptive Cable-Driven Rehabilitation Device With a Tilting Working Plane
,”
IEEE Trans. Rob.
,
30
(
4
), pp.
974
979
.
11.
Mengli
,
S.
,
Yiming
,
O.
,
Hu
,
J.
, et al
,
(2023)
, “
A Soft-Packaged and Portable Rehabilitation Glove Capable of Closed-Loop Fine Motor Skills
,”
Nat. Mach. Intell.
,
5
(
10
), pp.
1149
1160
.
12.
Rodriguez-Barroso
,
A.
,
Khan
,
M.
,
Santamaria
,
V.
,
Sammarchi
,
E.
,
Saltaren
,
R.
,
Agrawal
,
S.
, and
Rodriguez
,
A.
,
(2023)
, “
Simulating Underwater Human Motions on the Ground With a Cable-Driven Robotic Platform
,”
IEEE Trans. Rob.
,
39
(
1
), pp.
783
790
.
13.
Svinin
,
M. M.
,
Hosoe
,
S.
, and
Uchiyama
,
M.
,
2001
, “
On the Stiffness and Stability of Gough-Stewart Platforma
,”
IEEE International Conference on Robotics and Automation
,
Seoul, Soth Korea
,
May 21–26
, pp.
3268
3273
.
14.
Svinin
,
M. M.
,
Ueda
,
K.
, and
Uchiyama
,
M.
,
2000
, “
On the Stability Conditions for a Class of Parallel Manipulators
,”
IEEE International Conference on Robotics and Automation
,
Seoul, Soth Korea
,
Apr. 19–25
, pp.
2386
2391
.
15.
Behzadipour
,
S.
, and
Khajepour
,
A.
,
2006
, “
Stiffness of Cable-Based Parallel Manipulators With Application to Stability Analysis
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
303
310
.
16.
Michael
,
N.
,
Fink
,
J.
, and
Kumar
,
V.
,
2011
, “
Cooperative Manipulation and Transportation With Aerial Robots
,”
Auton. Rob.
,
30
(
1
), pp.
73
86
.
17.
Carricato
,
M.
, and
Merlet
,
J.-P.
,
2013
, “
Stability Analysis of Underconstrained Cable-Driven Parallel Robots
,”
IEEE Trans. Rob.
,
29
(
1
), pp.
288
296
.
18.
Bosscher
,
P. M.
, and
Imme
,
E.-U.
,
2004
, “
A Stability Measure for Underconstrained Cable-Driven Robots[C]
,”
IEEE International Conference on Robotics and Automation
,
New Orleans, LA
,
Apr. 26–May 1
, pp.
4943
4949
.
19.
Xu
,
J.
, and
Kim
,
B.-G.
,
2023
, “
A Collaborative Path Planning Method for Mobile Cable-Driven Parallel Robots in a Constrained Environment With Considering Kinematic Stability
,”
Compl. Intell. Syst.
,
9
(
5
), pp.
4587
4868
.
20.
Qian
,
S.
,
Bao
,
K.
,
Zi
,
B.
, and
Zhu
,
W. D.
,
2020
, “
Dynamic Trajectory Planning for a Three Degrees-of-Freedom Cable-Driven Parallel Robot Using Quintic B-Splines
,”
ASME J. Mech. Des.
,
142
(
7
), p.
073301
.
21.
Wei
,
H.
,
Qiu
,
Y.
, and
Sheng
,
Y.
,
2019
, “
On the Cable Pseudo-Drag Problem of Cable-Driven Parallel Camera Robots at High Speeds
,”
Robotica
,
37
(
10
), pp.
1695
1709
.
22.
Imed
,
J.
, and
Mohamed
,
B.
,
2020
, “
Discontinuous Finite-Time Control for Cable Driven Parallel Robots
,”
2020 IEEE Conference on Control Technology and Applications (CCTA)
,
ELECTR NETWORK
,
Aug. 24–26
, pp.
536
541
.
23.
Wang
,
Y. L.
,
Wang
,
K. Y.
,
Zhang
,
Z. X.
, et al
, “
Control Strategy and Experimental Research of a Cable-Driven Lower Limb Rehabilitation Robot
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
235
(
13
), pp.
2468
2481
.
24.
Ben Hamida
,
I.
,
Laribi
,
M. A.
,
Mlika
,
A.
, et al.
,
2020
, “
Novel Safety Criterion for Synthesis of Cable Driven Parallel Robots
,”
International Conference on Robotics Alpe-Adria Danube Region (RAAD)
,
ELECTR NETWORK
,
June 19
, pp.
112
120
.
You do not currently have access to this content.