Abstract

A strategy combining an improved rapidly exploring random tree (RRT) method with the artificial potential field (APF) method is proposed for the path planning of flexible tensegrity manipulators considering typical complex constraints, such as structural stability, obstacle avoidance, and cable no-slackening. The relationship between the node displacements and the elongations of active members is established for the kinematic analysis of tensegrity manipulators. The rest lengths of active members are taken as the design variables for the generation of a random tree. The guide node is utilized for goal-biased samplings to expedite the exploration toward the final configuration, while the APF method is introduced to ensure that the obtained elongations of active members can satisfy the constraint of obstacle avoidance. The proportion of random and goal-biased samplings is adaptively adjusted based on the sampling success rate. Futile random samplings can be significantly reduced by dynamically modifying the random sampling range according to the obtained configuration nearest to the final configuration. The computational procedure of the proposed method is presented. An illustrative flexible tensegrity manipulator is employed to demonstrate the adaptability of the proposed path planning method to complex constraints, especially structural stability.

References

1.
Fuller
,
R. B.
,
1959
, “
Tensile Integrity Structures
,” U.S. Patent No. 3:521.
2.
Calladine
,
C. R.
,
1978
, “
Buckminster Fuller's “Tensegrity” Structures and Clerk Maxwell's Rules for the Construction of Stiff Frames
,”
Int. J. Solids Struct.
,
14
(
2
), pp.
161
172
.
3.
Calladine
,
C. R.
, and
Pellegrino
,
S.
,
1991
, “
First-Order Infinitesimal Mechanisms
,”
Int. J. Solids Struct.
,
27
(
4
), pp.
505
515
.
4.
Guest
,
S. D.
,
2011
, “
The Stiffness of Tensegrity Structures
,”
IMA J. Appl. Math.
,
76
(
1
), pp.
57
66
.
5.
Zhu
,
D.
, and
Deng
,
H.
,
2020
, “
Deployment of Tensegrities Subjected to Load-Carrying Stiffness Constraints
,”
Int. J. Solids Struct.
,
206
, pp.
224
235
.
6.
Sabelhaus
,
A. P.
,
Bruce
,
J.
,
Caluwaerts
,
K.
,
Manovi
,
P.
,
Firoozi
,
R. F.
,
Dobi
,
S.
,
Agogino
,
A. M.
, and
SunSpiral
,
V.
,
2015
, “
System Design and Locomotion of SUPERball, an Untethered Tensegrity Robot
,”
2015 IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
,
May
, IEEE, pp.
2867
2873
.
7.
Woods
,
C.
, and
Vikas
,
V.
,
2023
, “
Design and Modeling Framework for DexTeR: Dexterous Continuum Tensegrity Manipulator
,”
ASME J. Mech. Rob.
,
15
(
3
), pp.
031006
.
8.
Xie
,
X.
,
Xiong
,
D.
,
Li
,
Z.
, and
Wen
,
J. Z.
,
2024
, “
A Novel Elbow-Inspired Cable-Driven Tensegrity Joint: Bionic Design, Coupled Kinematics, and Load Performance
,”
ASME J. Mech. Rob.
,
16
(
10
), pp.
101003
.
9.
Chen
,
M.
,
Liu
,
J.
, and
Skelton
,
R. E.
,
2020
, “
Design and Control of Tensegrity Morphing Airfoils
,”
Mech. Res. Commun.
,
103
, pp.
103480
.
10.
Song
,
N.
,
Zhang
,
M.
,
Li
,
F.
,
Kan
,
Z.
,
Zhao
,
J.
, and
Peng
,
H.
,
2024
, “
Dynamic Research on Winding and Capturing of Tensegrity Flexible Manipulator
,”
Mech. Mach. Theory
,
193
, pp.
105554
.
11.
Liu
,
K.
,
Zegard
,
T.
,
Pratapa
,
P. P.
, and
Paulino
,
G. H.
,
2019
, “
Unraveling Tensegrity Tessellations for Metamaterials With Tunable Stiffness and Bandgaps
,”
J. Mech. Phys. Solids
,
131
, pp.
147
166
.
12.
Furet
,
M.
, and
Wenger
,
P.
,
2019
, “
Kinetostatic Analysis and Actuation Strategy of a Planar Tensegrity 2-X Manipulator
,”
ASME J. Mech. Rob.
,
11
(
6
), p.
060904
.
13.
Fasquelle
,
B.
,
Khanna
,
P.
,
Chevallereau
,
C.
,
Chablat
,
D.
,
Creusot
,
D.
,
Jolivet
,
S.
,
Lemoine
,
P.
, and
Wenger
,
P.
,
2022
, “
Identification and Control of a 3-X Cable-Driven Manipulator Inspired From the Bird's Neck
,”
ASME J. Mech. Rob.
,
14
(
1
), p.
011005
.
14.
Fadeyev
,
D.
,
Zhakatayev
,
A.
,
Kuzdeuov
,
A.
, and
Varol
,
H. A.
,
2019
, “
Generalized Dynamics of Stacked Tensegrity Manipulators
,”
IEEE Access
,
7
, pp.
63472
63484
.
15.
Yoshimitsu
,
Y.
,
Tsukamoto
,
K.
, and
Ikemoto
,
S.
,
2022
, “
Development of Pneumatically Driven Tensegrity Manipulator Without Mechanical Springs
,”
2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Kyoto, Japan
,
Oct.
, IEEE, pp.
3145
3150
.
16.
Deng
,
H.
, and
Kwan
,
A. S. K.
,
2005
, “
Unified Classification of Stability of Pin-Jointed Bar Assemblies
,”
Int. J. Solids Struct.
,
42
(
15
), pp.
4393
4413
.
17.
Sultan
,
C.
,
2014
, “
Tensegrity Deployment Using Infinitesimal Mechanisms
,”
Int. J. Solids Struct.
,
51
(
21–22
), pp.
3653
3668
.
18.
Shea
,
K.
,
Fest
,
E.
, and
Smith
,
I. F.
,
2002
, “
Developing Intelligent Tensegrity Structures With Stochastic Search
,”
Adv. Eng. Inform.
,
16
(
1
), pp.
21
40
.
19.
Xu
,
X.
, and
Luo
,
Y.
,
2013
, “
Collision-Free Shape Control of a Plane Tensegrity Structure Using an Incremental Dynamic Relaxation Method and a Trial-and-Error Process
,”
Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng.
,
227
(
2
), pp.
266
272
.
20.
Jun-Hua
,
Z.
,
Xing-Fei
,
Y.
, and
Shi-Lin
,
D.
,
2007
, “
Failure Mode and Behaveior Analysis of Two Types of Cable Domes
,”
Eng. Mech.
,
24
(
1
), pp.
44
050
.
21.
Kan
,
Z.
,
Peng
,
H.
,
Chen
,
B.
,
Xie
,
X.
, and
Sun
,
L.
,
2019
, “
Investigation of Strut Collision in Tensegrity Statics and Dynamics
,”
Int. J. Solids Struct.
,
167
, pp.
202
219
.
22.
Sultan
,
C.
, and
Skelton
,
R.
,
2003
, “
Deployment of Tensegrity Structures
,”
Int. J. Solids Struct.
,
40
(
18
), pp.
4637
4657
.
23.
Dijkstra
,
E. W.
,
2022
, “A Note on Two Problems in Connexion with Graphs,”
Edsger Wybe Dijkstra: His Life, Work, and Legacy
,
K. R.
Apt
, and
T.
Hoare
, eds.,
Association for Computing Machinery
,
New York
, pp.
287
290
.
24.
Dechter
,
R.
, and
Pearl
,
J.
,
1985
, “
Generalized Best-First Search Strategies and the Optimality of A
,”
J. ACM
,
32
(
3
), pp.
505
536
.
25.
Lavalle
,
S.
,
1998
, “
Rapidly-Exploring Random Trees: A New Tool for Path Planning
,” Department of Computer Science, Oct., 98(11).
26.
Khatib
,
O.
,
1986
, “
Real-Time Obstacle Avoidance for Manipulators and Mobile Robots
,”
Int. J. Rob. Res.
,
5
(
1
), pp.
90
98
.
27.
Lu
,
Y.
,
Xu
,
X.
, and
Luo
,
Y.
,
2019
, “
Path Planning for Rolling Locomotion of Polyhedral Tensegrity Robots Based on Dijkstra Algorithm
,”
J. Int. Assoc. Shell Spat. Struct.
,
60
(
4
), pp.
273
286
.
28.
Baines
,
R. L.
,
Booth
,
J. W.
, and
Kramer-Bottiglio
,
R.
,
2020
, “
Rolling Soft Membrane-Driven Tensegrity Robots
,”
IEEE Robot. Autom. Lett.
,
5
(
4
), pp.
6567
6574
.
29.
Xu
,
X.
,
Sun
,
F.
,
Luo
,
Y.
, and
Xu
,
Y.
,
2014
, “
Collision-Free Path Planning of Tensegrity Structures
,”
J. Struct. Eng.
,
140
(
4
), pp.
04013084
.
30.
Porta
,
J. M.
, and
Hernández-Juan
,
S.
,
2016
, “
Path Planning for Active Tensegrity Structures
,”
Int. J. Solids Struct.
,
78
, pp.
47
56
.
31.
Li
,
F.
,
Peng
,
H.
,
Yang
,
H.
, and
Kan
,
Z.
,
2021
, “
A Symplectic Kinodynamic Planning Method for Cable-Driven Tensegrity Manipulators in a Dynamic Environment
,”
Nonlinear Dyn.
,
106
(
4
), pp.
2919
2941
.
32.
Moored
,
K. W.
, and
Bart-Smith
,
H.
,
2009
, “
Investigation of Clustered Actuation in Tensegrity Structures
,”
Int. J. Solids Struct.
,
46
(
17
), pp.
3272
3281
.
33.
Mao
,
T.
, and
Deng
,
H.
,
2023
, “
Path Planning of Slender Tensegrities Based on the Artificial Potential Field Method
,”
AIAA J.
,
61
(
5
), pp.
2255
2265
.
34.
Kuffner
,
J. J.
, and
LaValle
,
S. M.
,
2000,
, “
RRT-Connect: An Efficient Approach to Single-Query Path Planning
,”
Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065)
,
San Francisco, CA
,
Apr.
, IEEE, Vol. 2, pp.
995
1001
.
35.
Sultan
,
C.
,
2013
, “
Stiffness Formulations and Necessary and Sufficient Conditions for Exponential Stability of Prestressable Structures
,”
Int. J. Solids Struct.
,
50
(
14–15
), pp.
2180
2195
.
36.
Wang
,
W.
,
Deng
,
H.
, and
Wu
,
X.
,
2018
, “
Path Planning of Loaded Pin-Jointed Bar Mechanisms Using Rapidly-Exploring Random Tree Method
,”
Comput. Struct.
,
209
, pp.
65
73
.
You do not currently have access to this content.