Abstract

Assessment of the reliability and reliability sensitivity of positioning accuracy for industrial robots subject to aleatoric and epistemic uncertainties registers a challenging task. This study proposes a new optimized moment-based method for kinematic reliability analysis and its sensitivity analysis, which incorporates the sparse grid (SPGR) technique and the saddlepoint approximation (SPA) method. To start with, the positioning accuracy reliability and its sensitivity models of industrial robots are established via computational optimization techniques and kinematic criteria. The kinematic accuracy reliability and its sensitivity are then calculated. Specifically, the sparse grid technique is adopted to approach the positioning error statistical moments and moment sensitivities. On this basis, positioning accuracy reliability bounds and reliability sensitivity bounds are obtained by the saddlepoint approximation method and optimization techniques. Finally, two practical examples are implemented to demonstrate the proficiency of the currently proposed method against Monte Carlo simulation (MCS) results. The results show that the currently proposed method exhibits superior computational accuracy and efficiency in kinematic reliability and its sensitivity analyses for industrial robots.

References

1.
Zhang
,
D.
,
Shen
,
S.
, and
Han
,
X.
,
2023
, Moment Estimation-Based Method of Motion Accuracy Reliability Analysis for Industrial Robots,”
Advances in Reliability and Maintainability Methods and Engineering Applications
,
Y.
Liu
,
D.
Wang
,
J.
Mi
, and
H.
Li
, eds., Springer Series in Reliability Engineering,
Springer
,
Cham, Switzerland
, pp.
49
81
.
2.
Hafezipour
,
M.
, and
Khodaygan
,
S.
,
2017
, “
An Uncertainty Analysis Method for Error Reduction in End-Effector of Spatial Robots With Joint Clearances and Link Dimension Deviations
,”
Int. J. Comput. Integr. Manuf.
,
30
(
6
), pp.
653
663
.
3.
Zhou
,
B.
,
Li
,
S.
,
Zi
,
B.
,
Chen
,
B.
, and
Zhu
,
W.
,
2023
, “
Multi-Objective Optimal Design of a Cable-Driven Parallel Robot Based on an Adaptive Adjustment Inertia Weight Particle Swarm Optimization Algorithm
,”
ASME J. Mech. Des.
,
145
(
8
), p.
083301
.
4.
Zhang
,
D.
,
Zhang
,
N.
,
Ye
,
N.
,
Fang
,
J.
, and
Han
,
X.
,
2021
, “
Hybrid Learning Algorithm of Radial Basis Function Networks for Reliability Analysis
,”
IEEE Trans. Reliab.
,
70
(
3
), pp.
887
900
.
5.
Nguyen
,
V. L.
,
Kuo
,
C.-H.
, and
Lin
,
P. T.
,
2022
, “
Reliability-Based Analysis and Optimization of the Gravity Balancing Performance of Spring-Articulated Serial Robots With Uncertainties
,”
ASME J. Mech. Rob.
,
14
(
3
), p.
031016
.
6.
Zhang
,
T.
,
Peng
,
F.
,
Tang
,
X.
,
Yan
,
R.
,
Zhang
,
C.
, and
Deng
,
R.
,
2024
, “
An Active Semi-Supervised Transfer Learning Method for Robot Pose Error Prediction and Compensation
,”
Eng. Appl. Artif. Intell.
,
128
, p.
107476
.
7.
Wang
,
L.
,
Wu
,
X.
,
Gao
,
Y.
,
Chen
,
X.
, and
Wang
,
B.
,
2024
, “
Sensitivity Analysis of Performance Tests for Six-Degree-of-Freedom Serial Industrial Robots
,”
ASME J. Mech. Rob.
,
16
(
9
), p.
091009
.
8.
Wu
,
J.
,
Zhang
,
D.
,
Liu
,
J.
,
Jia
,
X.
, and
Han
,
X.
,
2020
, “
A Computational Framework of Kinematic Accuracy Reliability Analysis for Industrial Robots
,”
Appl. Math. Model.
,
82
, pp.
189
216
.
9.
Zhao
,
Q.
,
Guo
,
J.
, and
Hong
,
J.
,
2021
, “
System Kinematic Reliability Analysis for Robotic Manipulators Under Rectangular and Spherical Tolerant Boundaries
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
011004
.
10.
Luo
,
C.
,
Keshtegar
,
B.
,
Zhu
,
S. P.
,
Taylan
,
O.
, and
Niu
,
X.-P.
,
2022
, “
Hybrid Enhanced Monte Carlo Simulation Coupled With Advanced Machine Learning Approach for Accurate and Efficient Structural Reliability Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
388
, p.
114218
.
11.
Meng
,
Z.
,
Li
,
C.
,
Pang
,
Y.
,
Li
,
G.
, and
He
,
W.
,
2023
, “
New Bubble Sampling Method for Reliability Analysis
,”
Struct. Multidiscipl. Optim.
,
66
(
8
), pp.
1
15
.
12.
Hu
,
Z.
, and
Du
,
X.
,
2015
, “
First Order Reliability Method for Time-Variant Problems Using Series Expansions
,”
Struct. Multidiscipl. Optim.
,
51
(
1
), pp.
1
21
.
13.
Meng
,
Z.
,
Qian
,
Q.
,
Xu
,
M.
,
Yu
,
B.
,
Yıldız
,
A. R.
, and
Mirjalili
,
S.
,
2023
, “
PINN-FORM: A new Physics-Informed Neural Network for Reliability Analysis With Partial Differential Equation
,”
Comput. Methods Appl. Mech. Eng.
,
414
, p.
116172
.
14.
Hu
,
W.
,
Yan
,
J.
,
Zhao
,
F.
,
Jiang
,
C.
,
Liu
,
H.
,
Cho
,
H.
, and
Lee
,
I.
,
2023
, “
Surrogate-Based Time-Dependent Reliability Analysis for a Digital Twin
,”
ASME J. Mech. Des.
,
145
(
9
), p.
091708
.
15.
Li
,
M.
, and
Wang
,
Z.
,
2021
, “
An LSTM-Based Ensemble Learning Approach for Time-Dependent Reliability Analysis
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031702
.
16.
Pang
,
Y.
,
Wang
,
Y.
,
Lai
,
X.
,
Zhang
,
S.
,
Liang
,
P.
, and
Song
,
X.
,
2023
, “
Enhanced Kriging Leave-One-Out Cross-Validation in Improving Model Estimation and Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
414
, p.
116194
.
17.
Wang
,
D.
,
Qiu
,
H.
,
Gao
,
L.
, and
Jiang
,
C.
,
2023
, “
A Subdomain Uncertainty-Guided Kriging Method With Optimized Feasibility Metric for Time-Dependent Reliability Analysis
,”
Reliab. Eng. Syst. Saf.
,
243
, p.
109839
.
18.
Xu
,
J.
,
Du
,
Y.
, and
Zhou
,
L.
,
2021
, “
A Multi-Fidelity Integration Rule for Statistical Moments and Failure Probability Evaluations
,”
Struct. Multidiscipl. Optim.
,
64
(
3
), pp.
1305
1326
.
19.
Zhang
,
D.
,
Shen
,
S.
,
Jiang
,
C.
,
Han
,
X.
, and
Li
,
Q.
,
2022
, “
An Advanced Mixed-Degree Cubature Formula for Reliability Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
400
, p.
115521
.
20.
Rao
,
S.
, and
Bhatti
,
P.
,
2001
, “
Probabilistic Approach to Manipulator Kinematics and Dynamics
,”
Reliab. Eng. Syst. Saf.
,
72
(
1
), pp.
47
58
.
21.
Kim
,
J.
,
Song
,
W.-J.
, and
Kang
,
B.-S.
,
2010
, “
Stochastic Approach to Kinematic Reliability of Open-Loop Mechanism With Dimensional Tolerance
,”
Appl. Math. Model.
,
34
(
5
), pp.
1225
1237
.
22.
Zhao
,
Q.
,
Guo
,
J.
,
Hong
,
J.
, and
Chirikjian
,
G. S.
,
2021
, “
An Enhanced Moment-Based Approach to Time-Dependent Positional Reliability Analysis for Robotic Manipulators
,”
Mech. Mach. Theory
,
156
, p.
104167
.
23.
Zhang
,
D.
,
Shen
,
S.
,
Wu
,
J.
,
Wang
,
F.
, and
Han
,
X.
,
2023
, “
Kinematic Trajectory Accuracy Reliability Analysis for Industrial Robots Considering Intercorrelations Among Multi-Point Positioning Errors
,”
Reliab. Eng. Syst. Saf.
,
229
, p.
108808
.
24.
Shi
,
Y.
,
Lu
,
Z.
,
Li
,
Z.
, and
Wu
,
M.
,
2018
, “
Cross-Covariance Based Global Dynamic Sensitivity Analysis
,”
Mech. Syst. Signal Process.
,
100
, pp.
846
862
.
25.
Zhang
,
X.
,
Lu
,
Z.
,
Yun
,
W.
,
Feng
,
K.
, and
Wang
,
Y.
,
2020
, “
Line Sampling-Based Local and Global Reliability Sensitivity Analysis
,”
Struct. Multidiscipl. Optim.
,
61
(
1
), pp.
267
281
.
26.
Papaioannou
,
I.
, and
Straub
,
D.
,
2021
, “
Variance-Based Reliability Sensitivity Analysis and the FORM α-Factors
,”
Reliab. Eng. Syst. Saf.
,
210
, p.
107496
.
27.
Huang
,
X.
, and
Zhang
,
Y.
,
2013
, “
Reliability–Sensitivity Analysis Using Dimension Reduction Methods and Saddlepoint Approximations
,”
Int. J. Numer. Methods Eng.
,
93
(
8
), pp.
857
886
.
28.
Yun
,
W.
,
Lu
,
Z.
,
He
,
P.
,
Dai
,
Y.
, and
Feng
,
K.
,
2020
, “
Adaptive Subdomain Sampling and Its Adaptive Kriging–Based Method for Reliability and Reliability Sensitivity Analyses
,”
Struct. Multidiscipl. Optim.
,
61
(
3
), pp.
1107
1121
.
29.
Zhang
,
D.
, and
Han
,
X.
,
2020
, “
Kinematic Reliability Analysis of Robotic Manipulator
,”
ASME J. Mech. Des.
,
142
(
4
), p.
044502
.
30.
Ma
,
Y.
,
Li
,
H.
, and
Zhao
,
Z.
,
2021
, “
Reliability Sensitivity Analysis of Thermal Protection System
,”
Struct. Multidiscipl. Optim.
,
64
(
3
), pp.
1199
1220
.
31.
Gao
,
J.
,
Zhou
,
B.
,
Zi
,
B.
,
Qian
,
S.
, and
Zhao
,
P.
,
2022
, “
Kinematic Uncertainty Analysis of a Cable-Driven Parallel Robot Based on an Error Transfer Model
,”
ASME J. Mech. Rob.
,
14
(
5
), p.
051008
.
32.
Wei
,
P.
,
Song
,
J.
,
Lu
,
Z.
, and
Yue
,
Z.
,
2016
, “
Time-Dependent Reliability Sensitivity Analysis of Motion Mechanisms
,”
Reliab. Eng. Syst. Saf.
,
149
, pp.
107
120
.
33.
Huang
,
X.
, and
Zhang
,
Y.
,
2010
, “
Reliability Sensitivity Analysis for Rack-and-Pinion Steering Linkages
,”
ASME J. Mech. Des.
,
132
(
7
), p.
071012
.
34.
Xu
,
D.
,
2018
, “
Kinematic Reliability and Sensitivity Analysis of the Modified Delta Parallel Mechanism
,”
Int. J. Adv. Robot. Syst.
,
15
(
1
), p.
1729881418759106
. .
35.
Zhao
,
Q.
, and
Hong
,
J.
,
2022
, “
An Analytical Framework for Local and Global System Kinematic Reliability Sensitivity of Robotic Manipulators
,”
Appl. Math. Model.
,
102
, pp.
331
350
.
36.
Wang
,
C.
,
2019
, “
Evidence-Theory-Based Uncertain Parameter Identification Method for Mechanical Systems With Imprecise Information
,”
Comput. Methods Appl. Mech. Eng.
,
351
, pp.
281
296
.
37.
Meng
,
Z.
,
Li
,
C.
, and
Hao
,
P.
,
2023
, “
Unified Reliability-Based Design Optimization With Probabilistic, Uncertain-but-Bounded and Fuzzy Variables
,”
Comput. Methods Appl. Mech. Eng.
,
407
, p.
115925
.
38.
Liu
,
H.
,
Jiang
,
C.
,
Liu
,
J.
, and
Mao
,
J.
,
2019
, “
Uncertainty Propagation Analysis Using Sparse Grid Technique and Saddlepoint Approximation Based on Parameterized p-Box Representation
,”
Struct. Multidiscipl. Optim.
,
59
(
1
), pp.
61
74
.
39.
Zhang
,
D.
,
Liang
,
Y.
,
Cao
,
L.
,
Liu
,
J.
, and
Han
,
X.
,
2022
, “
Evidence-Theory-Based Reliability Analysis Through Kriging Surrogate Model
,”
ASME J. Mech. Des.
,
144
(
3
), p.
031701
.
40.
Lara-Molina
,
F. A.
, and
Dumur
,
D.
,
2021
, “
A Fuzzy Approach for the Kinematic Reliability Assessment of Robotic Manipulators
,”
Robotica
,
39
(
12
), pp.
2095
2109
.
41.
Zhang
,
T.
,
Peng
,
F.
,
Yan
,
R.
,
Tang
,
X.
,
Deng
,
R.
, and
Yuan
,
J.
,
2024
, “
Quantification of Uncertainty in Robot Pose Errors and Calibration of Reliable Compensation Values
,”
Robot. Comput. Integr. Manuf.
,
89
, p.
102765
.
42.
Li
,
J.
,
Jiang
,
C.
, and
Ni
,
B.
,
2021
, “
An Efficient Uncertainty Propagation Analysis Method for Problems Involving non-Parameterized Probability-Boxes
,”
ASME J. Mech. Des.
,
143
(
10
), p.
101704
.
43.
Wang
,
L.
,
Li
,
G.
,
Lu
,
Z.
, and
Feng
,
K.
,
2021
, “
Local Sensitivity Analysis of Failure Possibility and Its Universal Solution by Fuzzy Simulation
,”
Struct. Multidiscipl. Optim.
,
64
(
1
), pp.
219
238
.
44.
Zhang
,
Y.
,
Xu
,
P.
, and
Li
,
B.
,
2024
, “
Kinematics and Performance Analysis of a Deployable 7R Overconstrained Single-Loop Mechanism for Aerospace Platform
,”
ASME J. Mech. Rob.
,
16
(
8
), p.
081011
.
45.
Jia
,
X.
,
Jiang
,
C.
,
Fu
,
C.
,
Ni
,
B.
,
Wang
,
C.
, and
Ping
,
M.
,
2019
, “
Uncertainty Propagation Analysis by an Extended Sparse Grid Technique
,”
Front. Mech. Eng.
,
14
(
1
), pp.
33
46
.
46.
Zhao
,
D.
,
Yu
,
S.
,
Wang
,
Z.
, and
Wu
,
J.
,
2021
, “
A box Moments Approach for the Time-Variant Hybrid Reliability Assessment
,”
Struct. Multidiscipl. Optim.
,
64
(
6
), pp.
4045
4063
.
47.
Wang
,
Z.
, and
Jia
,
G.
,
2023
, “
Extended Sample-Based Approach for Efficient Sensitivity Analysis of Group of Random Variables
,”
Reliab. Eng. Syst. Saf.
,
231
, p.
108991
.
48.
Zhang
,
X.
,
Liu
,
J.
,
Yan
,
Y.
, and
Pandey
,
M.
,
2019
, “
An Effective Approach for Reliability-Based Sensitivity Analysis With the Principle of Maximum Entropy and Fractional Moments
,”
Entropy
,
21
(
7
), p.
649
.
49.
He
,
J.
, and
Guan
,
X.
,
2017
, “
Uncertainty Sensitivity Analysis for Reliability Problems With Parametric Distributions
,”
IEEE Trans. Reliab.
,
66
(
3
), pp.
712
721
.
50.
Pandey
,
M. D.
, and
Zhang
,
X.
,
2012
, “
System Reliability Analysis of the Robotic Manipulator With Random Joint Clearances
,”
Mech. Mach. Theory
,
58
, pp.
137
152
.
51.
Shen
,
S.
,
Zhang
,
D.
,
Han
,
X.
,
Jiang
,
C.
, and
Li
,
Q.
,
2024
, “
A Robust Optimization Framework for Design of Robotic System With Kinematic and Dynamic Criteria
,”
Comput. Methods Appl. Mech. Eng.
,
423
, p.
116866
.
52.
Huang
,
B. Q.
, and
Du
,
X. P.
,
2006
, “
Uncertainty Analysis by Dimension Reduction Integration and Saddlepoint Aporoximations
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
26
33
.
53.
Wu
,
H.
, and
Du
,
X.
,
2020
, “
System Reliability Analysis With Second-Order Saddlepoint Approximation
,”
ASCE-ASME J. Risk Uncert. Eng. Syst., Part B: Mech. Eng.
,
6
(
4
), p.
041001
.
You do not currently have access to this content.